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Do Androids Dream of Henri Poincaré 
with Hierarchical Optimization ? 

Optimization using subliminal mechanism ?   
Mathematical optimization has been a major driving force 
of modern AI technologies and data sciences (see, e.g., 
[1,2,3]). A question arises: what is a groundbreaking 
optimization model that is expected to bring about 
dramatical evolution in next-generation AI ? A valuable 
hint for this visionary question could be found only if we 
try to reveal the ingenious ways of thinking of 
exceptionally  gifted humans, e.g., great mathematicians 
and grand masters of board games. In my student days 
long ago, I found, in Mathematical Discovery by Henri 
Poincaré (see, e.g., Chapter III of [4, pp.387-400]), the 
following impressive words: (i) Everything happens as if 
the discoverer were a secondary examiner who had only to 
interrogate candidates declared eligible after passing a 
preliminary test [4, p.391], (ii)  Of the very large number 
of combinations which the subliminal ego blindly forms, 
almost all are without interest and without utility. But, for 
that very reason, they are without action on the aesthetic 
sensibility; the conscious will never know them [4, p.397]. 
Poincaré's words seem for me now to suggest that 
breakthrough ideas represented by outstanding 
mathematical discovery can be achieved through some 
mysterious process of double stage search where the first 
stage search is performed with the aid of a certain  
aesthetic sensibility in unconscious field.  Similar words 
are also found in Yoshiharu Habu's explanation [5] on his  
aesthetic sensibility  that unconsciously helps him select a 
breakthrough move in a crucial phase of shogi game.    
Their explanations tempt me to formulate a hypothesis that 
their brains are exploiting simultaneously two different 
criteria, say Φ for the preliminary tests in their unconscious 
fields and ψ for the secondary tests in their conscious ones 
and to model their ingenious search as a certain 
computational process for the hierarchical optimization:  

 
rather than the traditional optimization model just for 
minimization of Φ , where the function Ψ  is newly 
introduced for the second stage optimization.  My amateur 
hypothesis does not contradict Sigmund Freud's 
psychoanalysis [6] saying that information stored in 
unconscious field of our brain has various level of 
difficulty for transforming it into available form in 
conscious field. Such a transform seems to correspond to 
the selection process explained by Poincaré and Habu in 
terms of aesthetic sensibility (Note: A similar 
consideration on the role of  sub-conscious representation 
for creativity is found [7] but not in the context of 
optimization models). My naive imagination toward 
optimization using subliminal mechanism has also been 
motivated by studies on the neural associative memory [8] 
and the resting state fMRI [9]. 

 
What can we do for hierarchical optimization ?   

The hierarchical optimization in (1) seems to be our ideal 
target but in reality the computation of  its solution must be 
very challenging, as suggested by Tikhonov approximation 
theorem [10], even if  Φ and Ψ are convex functions.  To 
keep the currently achievable applicability by the state-of-
the-art non-hierarchical convex optimization algorithms, 
we model the first stage cost function in (1) as  

where 𝑓:ℝ' → (−∞,∞]	 and 𝑔0:ℝ'1 → (−∞,∞]	(𝑖 =
1,2,… ,𝑚) are convex but not necessarily differentiable 
everywhere, and 𝐴0 ∈ ℝ'1×'(𝑖 = 1,2,… ,𝑚).	 Fortunately, 
a unified perspective from the view point of convex 
analysis and  monotone operator theory (see, e.g., [11,12]) 
tells us  that many convex optimization scenarios in data 
sciences, machine learning, and signal processing, appear 
as instances of the model (2) and that  the so-called 
proximity operators  of 𝑓  and 𝑔0	(𝑖 = 1,2,… ,𝑚)  are 
available [11] as  building blocks [13] of a computable 
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nonexpansive operator 𝑇:ℋ → ℋ and a bounded linear 
operator Ξ:ℋ →ℝ' satisfying  

where ℋ is  a certain real Hilbert space, not necessarily ℋ
=ℝ', and Fix(𝑇) ≔ {𝒛 ∈ ℋ|	𝑇(𝒛) = 𝒛} is the set of all 
fixed points of 𝑇. Indeed, by plugging the nonexpansive 
operator 𝑇  and the convex function Θ ≔ Ψ○ Ξ into the 
hybrid steepest descent method  [13,14]: 

with a slowly decreasing sequence (𝜆J)JKL ⊂ [0,∞) , 
under reasonable conditions, we can generate a sequence  
Ξ(𝐳𝑛)	(𝑛 = 0,1,2,… ) which converges to a solution of  (1).  

An application to Cortes-Vapnik problem  
To demonstrate the inherent applicability of the 
hierarchical convex optimization to machine learning 
problems, I conclude this article with a short introduction 
on our recent application [13] to a novel hierarchical 
convex relaxation of the Cortes-Vapnik problem [15, 
Sec.3]. This application has been made for sound extension 
of a central idea in the classical Support Vector Machine 
(SVM) [1] to be applicable to general training dataset:  

where 𝔏(𝐱0) is the binary label assigned to 𝐱0. Since the 
original Cortes-Vapnik problem was introduced as an NP-
hard problem with a hierarchical structure, a simple 
convex relaxation (the soft margin SVM1):  

 
has been used extensively with a tuning parameter 𝐶 > 0.  
However this naive relaxation induces a natural question:  
Is the solution of (4) for general training data 𝒟 really 
a mathematically sound extension of the classical SVM ? 
This is because, by the complete loss of the hierarchical 
structure, the solution of (4) cannot reproduce, in general, 
the classical SVM that maximizes the margin among all 
error-free linear classifiers for linearly separable training 
dataset (Note: The above question is common even for the 
soft-margin SVM applied to the transformed data with 
nonlinear kernels [1]).  Therefore, we newly formulate  

                                                             
1 The function Φ(𝐰, b) is often expressed with a hinge loss 

function and serves as a convex relaxation of the number 
of misclassified training samples. The squared margin of 

the linear classifier with (𝐰, b) is given by 2YLΨYL(𝐰, b). 

as a much more faithful convex relaxation of the original 
Cortes-Vapnik problem than (4). Remark that the 
hierarchical convex relaxation (5) is well-defined even for 
linearly non-separable training dataset 𝒟  and can 
reproduce perfectly the classical SVM for linearly 
separable dataset unlike (4). Fortunately, the problem (5) 
falls in the class of the hierarchical convex optimization 
problems of type (1) and (2), and therefore is solvable 
efficiently by combining the ideas in the hybrid steepest 
descent method  and the art of proximal splitting [13]．   
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