
Chapter 17
Minimizing the Moreau Envelope of Nonsmooth
Convex Functions over the Fixed Point Set of
Certain Quasi-Nonexpansive Mappings

Isao Yamada, Masahiro Yukawa and Masao Yamagishi

Summary: The first aim of this paper is to present a useful toolbox of quasi-
nonexpansive mappings for convex optimization from the viewpoint of using their
fixed point sets as constraints. Many convex optimization problems have been
solved through elegant translations into fixed point problems. The underlying prin-
ciple is to operate a certain quasi-nonexpansivemapping T iteratively and generate a
convergent sequence to its fixed point. However, such a mapping often has infinitely
many fixed points, meaning that a selection from the fixed point set Fix(T ) should be
of great importance. Nevertheless, most fixed point methods can only return an “un-
specified” point from the fixed point set, which requires many iterations. Therefore,
based on common sense, it seems unrealistic to wish for an “optimal” one from the
fixed point set. Fortunately, considering the collection of quasi-nonexpansive map-
pings as a toolbox, we can accomplish this challengingmission simply by the hybrid
steepest descent method, provided that the cost function is smooth and its derivative
is Lipschitz continuous. A question arises: how can we deal with “nonsmooth” cost
functions ?
The second aim is to propose a nontrivial integration of the ideas of the hybrid
steepest descent method and theMoreau-Yosida regularization, yielding a useful ap-
proach to the challenging problem of nonsmooth convex optimization over Fix(T ).
The key is the use of smoothing of the original nonsmooth cost function by its
Moreau-Yosida regularizationwhose derivative is always Lipschitz continuous. The
field of application of hybrid steepest descent method can be extended to the mini-
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mization of the ideal smooth approximation over Fix(T ). We present the mathemat-
ical ideas of the proposed approach together with its application to a combinatorial
optimization problem: the minimal antenna-subset selection problem under a highly
nonlinear capacity-constraint for efficient MIMO (Multiple Input Multiple Output)
communication systems.

Key words: Nonsmooth convex optimization, Moreau envelope, Hybrid steepest
descent method
AMS 2010 Subject Classification: 47H10, 47H09, 49M20, 65K10

17.1 Introduction

How can we exploit various types of information efficiently in convex optimization?
This has been one of the fundamental questions of paramount importance from both
practical and theoretical viewpoints.We present a new insight into this question with
(i) fixed point characterizations of constraint sets and (ii) the Moreau-Yosida regu-
larization of a nonsmooth convex function. In order to contrast our contributionwith
existing approaches, let us briefly introduce a stream of research developments, in-
cluding classical and state-of-the-art techniques, for treating (multiple) constraints.

17.1.1 Treatments of Constraints in Convex Optimization

A general convex optimization problem is formulated as follows: minimize a convex
function f ∈Γ0(H ) over a closed convex subsetC of a real Hilbert spaceH . Here,
Γ0(H ) stands for the class of all lower semicontinuous convex functions fromH to
(−∞,∞] which are not identically equal to+∞. Suppose for instance that f is differ-
entiable with its derivative Lipschitz continuous and PC, the metric projection onto
C (see Fact 17.2(c)), can be computed efficiently. In this special case, we may use
Goldstein’s projected gradient method [71]. However, this classical approach can-
not satisfy the increasing demand for nonsmooth convex optimization under more
general constraints.
A couple of unified approaches covering many existing schemes involve the fol-

lowing formulation [103, 89, 66, 57, 125, 46, 42]: minimize f1+ f2 for fi ∈Γ0(H ),
i = 1,2. For example, under a certain qualification condition on f1 and f2, the
Douglas-Rachford splitting type algorithm (see Examples 17.6(c) and 17.12(f))[89,
57, 42] approximates a minimizer of f1+ f2 with successive use of

proxγ fi :H → H : x �→ arg min
y∈H

{
fi(y)+

1
2γ

‖x− y‖2
}
, (17.1)
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which is well-defined as a single valued mapping called the proximity operator or
proximal mapping [97, 98, 108, 46] of index γ ∈ (0,∞) of fi (i= 1,2) (see Section
17.2.1). This approach can handle the problem considered in the previous paragraph
by letting f1 := f and f2 := iC which denotes the indicator function

(∀x ∈ H ) iC(x) :=

{
0, if x ∈C;
∞, otherwise.

In fact, the proximity operator of iC for any γ ∈ (0,∞) coincides with PC. We empha-
size however that the approach in [57, 125, 46, 42] practically requires an efficient
scheme to compute the proximity operators, and obtaining such a scheme itself is
often a challenging issue to address for each application individually.
This certainly motivates the recent active studies on computational schemes for

proximity operators of various types of functions in Γ0(H ) [46, 42, 62], which
include the pre-composition of g ∈ Γ0(H ) with a frame synthesis affine operator
[31, 42, 62, 117]. Another development is the extension of the Douglas-Rachford
splitting type scheme to the case of multiple convex functions [43, 44, 67]; i.e., min-
imize

∑m
i=1 fi for m > 2 and fi ∈ Γ0(H ) (i = 1,2, · · · ,m), through the Pierra-type

product-space reformulation [104, 105]. This extension enables us to deal with the
case where a constraint set C can be expressed as the intersection of a finite num-
ber of closed convex setsCi (i ∈ I , assuming that PCi can be computed efficiently).
Indeed, we can minimize a nonsmooth convex function f :=

∑
j∈J f j over C by

applying the extended scheme to
∑

i∈I iCi +
∑

j∈J f j. The use of the expression
C =

⋂
i∈I Ci shares similarity with the commonly used strategy in the simpler con-

texts of the convex feasibility problems (see, e.g., [18, 34, 7, 30, 48]). However,
again, this approach has an obvious limitation, as there are many applications, in-
cluding the one addressed in this work, in which the constraint set C ⊂ H can
hardly be expressed as the intersection of (a finite number of) simple closed convex
sets. The fixed point characterization throws us a rope to escape from the dilemma,
as explained in the following.

17.1.2 Fixed Point Characterizations of Closed Convex Sets

A mapping T : H → H is called quasi-nonexpansive if this mapping has its
nonempty fixed point set Fix(T ) := {x ∈ H | T (x) = x} �= /0 and ‖T (x)− z‖ ≤
‖x− z‖ (∀x∈ H ,∀z ∈ Fix(T )). In this case, the fixed point set Fix(T ) is guaranteed
to be closed convex in H (see Proposition 17.3 in Section 17.2.2). In the context
of recent studies on the convex feasibility problems as well as the unified treatment
of certain nonsmooth optimization schemes, many powerful ideas have been found
to deal with a closed convex setC as the fixed point set of an efficiently-computable
quasi-nonexpansive mapping [7, 35, 8, 131, 136, 135].

In the final manuscript, the following reference has been added into the square brackets underlined above:
Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Probl. 27(2), 025010
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For example, if the set S := arg min
x∈H

{ f1(x)+ f2(x)} is nonempty in the above
context of minimizing f1+ f2 for fi ∈ Γ0(H ), i= 1,2, the set S is a closed convex
set which is usually hard to be expressed as the intersection of (a finite number of)
simple closed convex sets. On the other hand, in a variety of scenarios, the set S can
be expressed as the fixed point set of a nonexpansive mapping [46] or as the image
of a proximity operator of the fixed point set of another nonexpansivemapping [42],
where these nonexpansivemappings can be computed efficiently (see Section 17.2.2
for basic ideas to design a mapping that has a desirable fixed point set).
Another quite useful example is found in the characterization of the nonempty

level set lev≤0(g) := {x ∈ H | g(x) ≤ 0} of g ∈ Γ0(H ) as the fixed point set of
the subgradient projection Tsp(g) relative to g. The subgradient projection operator
is firmly quasi-nonexpansive ([126, Lemma 2.8], [8, 135]) and has been playing
important roles as a low complexity approximation of the metric projection onto
lev≤0(g) in many scenarios; e.g., in signal and image processing applications [139,
37, 41], the metric projection is often hard to compute (see Proposition 17.7 and
Example 17.9 for designing better approximations than the subgradient projection).
In [139, 134, 115, 112, 123], the subgradient projection was used to elude from the
load for solving large scale systems of equations in an adaptive signal processing or
adaptive online classification problems. In [41], the subgradient projection was used
to suppress the total variation of the restored image.
The idea of dealing with a closed convex set as the fixed point set of a nonex-

pansive mapping has been applied successfully in creations of many powerful opti-
mization schemes with the strong support of the innovative discovery of the Mann
iterative process [93, 54, 74], which is an extremely simple algorithm to generate a
(weakly) convergent sequence to a fixed point of a general nonexpansive mapping.
Moreover recent notable extensions, e.g., [39], of the algorithm have a guarantee
of convergence under much weaker conditions than those found in [93, 54, 74] and
applied in the unifications, e.g., in [46, 42]. In short, these previous studies aim to
find an arbitrary point in the fixed point set of a nonexpansive mapping. The next
stage which we should clear is the following: find an optimal point in some sense in
the fixed point set. The following subsection introduces some existing methods for
this problem with a touch of motivation of the current study.

17.1.3 Existing Methods on the Advanced Stage

We now consider the problem of minimizing a convex function over the fixed point
set of a certain quasi-nonexpansive mapping. There seems to be only few types of
algorithms that can deal with this problem in a computationally manageable way.
Among others, the hybrid steepest descent method (see, e.g., [137, 49, 138, 136,
100, 101, 129, 135, 120, 91, 83, 150, 33]) has been developed as an algorithm to
achieve such a goal originally by extending a fixed point iteration [77, 88, 128, 36,
6]; the so-called Halpern-type iteration or anchor method, which is able to find
from a given point the nearest fixed point of a nonexpansive mapping. The hybrid
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Fig. 17.1 Treatment of constraint sets as fixed point sets of nonlinear mappings.

steepest descent method has two distinguished features. First, it has a mathematical
guarantee of convergence to the solution to the convex optimization over the fixed
point set. Second, it only requires at each iteration simple computation of a gradient
descent operator and a quasi-nonexpansive mapping, of which the fixed point set
defines the constraint set of the optimization problem. Indeed, the method has been
applied successfully to signal and image processing problems (see, e.g., [116, 78,
114, 120, 151, 117]).
By extending the ideas in [79], another algorithm, which we refer to as the gen-

eralized Haugazeau’s algorithm, was developed for minimizing a strictly convex
function in Γ0(H ) over the fixed point set of a certain quasi-nonexpansivemapping
[38]. In particular, this algorithm was specialized in a clear way for finding the near-
est fixed point of a certain quasi-nonexpansivemapping [8] and applied successfully
to an image recovery problem [41]. If we focus on the case of a nonstrictly con-
vex function, the generalized Haugazeau’s algorithm is not applicable, while some
convergence theorems of the hybrid steepest descent method suggest its sound ap-
plicability provided that the derivative of the function is Lipschitzian. Due to the
Lipschitz-continuity assumption, however, it still remains an open problem to mini-
mize a nonsmooth convex function over the fixed point set of a quasi-nonexpansive
mapping (see Fig.17.1).

17.1.4 Contributions of This Paper

So far we do not have in general any promising (computationally manageable) algo-
rithm for the solution to the minimization problem of a nonsmooth convex function
over the fixed point set of a quasi-nonexpansive mapping. We therefore present a
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nontrivial application of the hybrid steepest descent method to approach the prob-
lem. Our attention is to the notable fact that any function f ∈Γ0(H ) can be approx-
imated with any accuracy by

γ f :H →R : x �→ min
y∈H

{
f (y)+

1
2γ

‖x− y‖2
}

= f
(
proxγ f (x)

)
+
1
2γ

∥∥∥x− proxγ f (x)∥∥∥2 , (17.2)

which is called the Moreau envelope 1 (or the Moreau-Yosida regularization2) of
index γ ∈ (0,∞) of f . The Moreau envelope γ f is a smooth approximation of f with
surprisingly beautiful properties. In particular, the most attractive property for us
is that the Moreau envelope γ f has a Lipschitz continuous gradient over H (see
Section 17.3.1). Moreover, if arg min

x∈H
f (x) �= /0, the set of all global minimizers of

f is equal to that of the Moreau envelope (see Fact 17.2). These distinctive features
suggest that the Moreau-Yosida regularization and the proximity operator are the
keys bridging the gap between the analyses of smooth and nonsmooth convex func-
tions. For example, these features have been utilized to develop efficient algorithms
specialized for unconstrained nonsmooth convex optimization problems (see, e.g.,
[107, 65]). In addition to this direct use, the practical value of the Moreau envelope
has been examined implicitly or explicitly as a smooth relaxation of the absolute
value function in many applications (see Section 17.3.1).
In this study, we propose to approach the nonsmooth optimization problem

minimize f (x) subject to x ∈ Fix(T ) (17.3)

by solving its smooth relaxation

minimize γ f (x) subject to x ∈ Fix(T ) (17.4)

with the hybrid steepest descent method. Here, f ∈ Γ0(H ) (which in particular
we consider to be nonsmooth) and T :H → H is a quasi-nonexpansive mapping
(Note: The solution sets for (17.3) and (17.4) are not the same in general although
they coincide specially in the simplest unconstrained case, i.e., Fix(T ) = H ).
Thanks to (i) the beautiful properties of the Moreau envelope and (ii) the flexi-
bility in expressing a constraint set as the fixed point set of a quasi-nonexpansive
mapping, the proposed approach enjoys wide applicability.
The rest of this paper is organized as follows. For readers’ convenience, Sec-

tion 17.2 presents a short tour in computational convex analysis which contains (i)
elements of convex analysis, (ii) the fixed point theory of quasi-nonexpansive map-
ping including a basic algorithm to approximate a fixed point of the mapping, and
(iii) elements of the variational inequality problems. It also introduces briefly one

1 Nice introductions to the Moreau envelope are found, e.g., in [108, 46].
2 As will be seen in (17.23), the derivative ∇γ f is given as the Yosida approximation [141] of the
subdifferential ∂ f of f .
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role of quasi-nonexpansive mapping in signal processing. In Section 17.3, we will
introduce the essence of the Moreau-Yosida regularization and the hybrid steepest
descent method. Then we will show how to join the two concepts to approach the
minimization problem of a nonsmooth convex function over the fixed point set of
certain quasi-nonexpansive mappings. In Section 17.4, we demonstrate the effec-
tiveness of the proposed approach in its application to the minimal antenna-subset
selection problem under a highly nonlinear capacity-constraint for efficient MIMO
(Multiple Input Multiple Output) communication systems; the convex relaxation
of the problem is the �1 norm minimization under the constraint. Finally, in Sec-
tion 17.5, we conclude this paper with some remarks on other possible advanced
applications of the hybrid steepest descent method.

17.2 A Short Tour in Computational Convex Analysis

17.2.1 Selected Elements of Convex Analysis

In the following, we list minimum notions in convex analysis, which are necessary
for our discussion (see, e.g., [7, 46, 48, 59, 81, 108, 122, 147, 133, 10] for detailed
account on these notions). Let H be a real Hilbert space equipped with an inner
product 〈·, ·〉 and its induced norm ‖ · ‖.
Definition 17.1. (Basics in Convex Analysis)

(a) (Convex set) A set C ⊂ H is called convex if λx+ (1− λ )y ∈ C for every
x,y ∈ C and every λ ∈ [0,1]. If a set C ⊂ H is closed as well as convex, it is
called closed convex.

(b) (Convex function, Proper function) A function f :H → (−∞,∞] := R∪{∞}
is called convex if

(∀x,y ∈ H ,∀λ ∈ (0,1)) f (λx+(1−λ )y)≤ λ f (x)+ (1−λ ) f (y). (17.5)

In particular, a convex function f :H → (−∞,∞] is called proper if

dom( f ) := {x ∈ H | f (x) < ∞} �= /0.

A function f ∈ Γ0(H ) is called strictly convex if

(x �= y,λ ∈ (0,1))⇒ f (λx+(1−λ )y)< λ f (x)+ (1−λ ) f (y).

(c) (Lower semicontinuous function) A function f :H → (−∞,∞] is called lower
semicontinuous if the set lev≤α( f ) := {x ∈ H | f (x) ≤ α} is closed for every
α ∈ R (Note: If f is continuous over H , f is lower semicontinuous). The set
of all proper lower semicontinuous convex functions is denoted by Γ0(H ).

(d) (Coercivity) A function f ∈ Γ0(H ) is called coercive if
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‖x‖→ ∞⇒ f (x)→ ∞.

In this case, the existence of a minimizer of f , i.e., {x� ∈ H | f (x�) ≤
f (x) (∀x ∈ H )} �= /0, is guaranteed.

Fact 17.2. (Fundamental Tools for Convex Optimization)

(a) (Subgradient, Subdifferential, Legendre-Fenchel conjugate) Given f ∈Γ0(H ),
the subdifferential of f at x is defined as the set of all subgradients of f at x:

∂ f (x) := {u ∈ H | 〈y− x,u〉+ f (x)≤ f (y),∀y ∈ H } .

Therefore 0 ∈ ∂ f (x) ⇔ f (x) = miny∈H f (y). If f is continuous at x ∈ H ,
∂ f (x) is a nonempty closed convex set. Moreover, if f is Gâteaux differ-
entiable3 at x, the subdifferential at x is a singleton as ∂ f (x) = {∇ f (x)}
[81, 133, 10]. The subdifferential is regarded as a set-valued mapping ∂ f :
H → 2H , which is called bounded if it maps bounded sets to bounded sets
[14] (Note: 2H stands for the collection of all subsets ofH ).
Remark that the subdifferential of f at x ∈ H can be defined alternatively as
∂ f (x) := {u ∈ H | f (x)+ f ∗(u) = 〈x,u〉}, where f ∗ ∈ Γ0(H ) is defined by

(∀u ∈ H ) f ∗(u) := sup
x∈H

{〈x,u〉− f (x)}

and it is called the conjugate (also named Legendre-Fenchel conjugate, or
Legendre-Fenchel transform) of f .

(b) (Proximity operator) The proximity operator of index γ ∈ (0,∞) of f ∈ Γ0(H )
is defined (as in (17.1)) by

proxγ f :H → H : x �→ arg min
y∈H

{
f (y)+

1
2γ

‖x− y‖2
}
, (17.6)

where the existence and the uniqueness of the minimizer are guaranteed re-
spectively by the coercivity and the strict convexity of f (·)+ 1

2γ ‖x−·‖2. Equiv-
alently, for every x∈H , proxγ f (x) is characterized as a unique point satisfying

3 (Gâteaux and Fréchet derivatives of function) Let U be an open subset of H . Then a func-
tion f : U → R is called Gâteaux differentiable at x ∈ U if there exists a(x) ∈ H such that

limδ→0
f (x+δh)− f (x)

δ = 〈a(x),h〉 (∀h ∈H ). In this case, ∇ f (x) := a(x) is called Gâteaux derivative
(or gradient) of f at x.
On the other hand, a function f : U → R is called Fréchet differentiable over U if for each

u ∈U there exists a(u) ∈ H such that

f (u+h) = f (u)+ 〈a(u),h〉+o(‖h‖) for all h ∈ H ,

where r(h) = o(‖h‖) means lim
h→0

r(h)/‖h‖ = 0. In this case, ∇ f :U →H defined by ∇ f (u) = a(u)

is called Fréchet derivative of f over U . If f is Fréchet differentiable over U , f is also Gâteaux
differentiable over U and both derivatives coincide. Moreover, if f is Gâteaux differentiable with
continuous derivative ∇ f overU , then f is also Fréchet differentiable overU .
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{proxγ f (x)}= {z ∈ H | z+ γ∂ f (z) � x}, (17.7)

i.e.,
proxγ f (x) = (I+ γ∂ f )−1 (x), (17.8)

which is again equivalent to

(∀y ∈ H )

〈
y− proxγ f (x),

x− proxγ f (x)
γ

〉
+ f (proxγ f (x))≤ f (y).

The proximity operator is firmly nonexpansive, i.e., rproxγ f := 2proxγ f −
I : H → H is nonexpansive (see Section 17.2.2 for the definition of nonex-
pansivity of a mapping):

(∀x,y ∈ H ) ‖(2proxγ f − I)x− (2proxγ f − I)y‖ ≤ ‖x− y‖.

Moreover, if arg min
x∈H

f (x) �= /0, the set of all minimizers of f is equal to that of

the Moreau envelope and also expressed as the fixed point set of proxγ f :H →
H ; i.e.,

arg min
x∈H

f (x) = arg min
x∈H

γ f (x) = Fix
(
proxγ f

)
.

(c) (Metric projection onto closed convex sets) Given a nonempty closed convex set
C ⊂ H and any point x ∈ H , there exists a unique point PC(x) ∈C satisfying

dC(x) :=min
z∈C

‖x− z‖= ‖x−PC(x)‖ .

The mapping H � x �→ PC(x) ∈ C is called the metric projection (or convex
projection) onto C and obviously PC(x) = proxγiC (x) (∀γ ∈ (0,∞),∀x ∈ H ),
hence PC is firmly nonexpansive with Fix(PC) = C �= /0 (see Example 17.6(a)
and Fig.17.2). Moreover PC :H →C is characterized by

x� ∈C satisfies 〈x−x�,z−x�〉 ≤ 0 (∀z ∈C) ⇔ x� ∈C satisfies x� = PC(x).
(17.9)

(d) (Expression of a closed convex set I) Given (possibly infinitely many) closed
convex sets Ci ⊂ H (i ∈ I : an index set), their intersection

⋂
i∈I

Ci is again

a closed convex set (Note: This property is a natural nonlinear generalization
of the elementary fact that the intersection of multiple subspaces is again a
subspace in a vector space).

(e) (Expression of a closed convex set II) Given a function f ∈ Γ0(H ), the set
lev≤0( f ), which is called the (zero-)level set of f , is closed convex. Conversely,
given a closed convex set C ⊂ H , there exists a continuous convex function
f : H → R satisfying C = lev≤0( f ). The function dC : H → [0,∞) in (c) is
obviously such an example.
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Fig. 17.2 Convex Projection: Metric projection onto a closed convex set C.

17.2.2 Quasi-Nonexpansive Mappings and Their Fixed Point Sets

Suppose that a mapping T :H →H has at least one fixed point. Then the mapping
T :H →H is called quasi-nonexpansive (or Fejér) [7, 8, 54, 126] if T satisfies for
every x ∈ H and every z ∈ Fix(T )

‖T (x)− z‖ ≤ ‖x− z‖. (17.10)

The identity operator I : H → H is also a quasi-nonexpansive mapping which
satisfies of course Fix(I) = H .
We introduce special subclasses of quasi-nonexpansivemappings below (see also

Fig.17.3). A quasi-nonexpansive mapping T is said to be attracting if T satisfies for
every x �∈ Fix(T ) and every z ∈ Fix(T )

‖T (x)− z‖< ‖x− z‖.

In particular, an attracting mapping T is called α-strongly attracting if there exists
some α > 0 satisfying for every x ∈ H and every z ∈ Fix(T )

α‖x−T (x)‖2 ≤ ‖x− z‖2−‖T (x)− z‖2.

The above inequality offers a lower bound for improvement by T of approximation
accuracy of a point x to all fixed points z of T .
A quasi-nonexpansive mapping T : H → H is said to be α-averaged [3, 7]

if there exist some α ∈ (0,1) and some quasi-nonexpansive mapping N such that
T = (1−α)I+αN. In this case, T satisfies an obvious relation Fix(T ) = Fix(N).
Moreover T is strongly attracting (see Proposition 17.3(b) below). In particular, if
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Fig. 17.3 Quasi-nonexpansive mapping and its subclasses (A nonexpansive mapping is also quasi-
nonexpansive if this mapping has at least one fixed point).

T is 12 -averaged, T is called a firmly quasi-nonexpansive mapping [135] (the class
of firmly quasi-nonexpansivemappings is specially denoted by T [8]).
On the other hand, a mapping T :H →H is called Lipschitz continuous with a

Lipschitz constant κ or shortly κ-Lipschitzian if there exists some κ > 0 satisfying
for every x,y ∈ H

‖T (x)−T (y)‖ ≤ κ‖x− y‖.
In particular, if there exists some κ < 1, T is called a contraction (or a strictly con-
tractive) mapping. In this case, the Banach-Picard’s contraction mapping theorem
guarantees the unique existence of the fixed point of T , and it is not hard to see
that T is α-averaged for any α ∈ [ κ+12 ,1

)
. If the mapping T is 1-Lipschitzian, T

is called a nonexpansive mapping [7, 69, 70, 122] and in this case, T is also quasi-
nonexpansive if Fix(T ) �= /0. In contrast to the case of the existence of κ < 1, the
existence of κ = 1 is insufficient to guarantee the existence of a fixed point in view
of the following example: T :R � x �→ x+ 1 ∈ R.
The following Proposition 17.3(a) guarantees that the closedness and convex-

ity of the fixed point set of any quasi-nonexpansive mapping. This property is very
fortunate to express a constraint set, in convex optimization, as the fixed point set
of a quasi-nonexpansive mapping. For example, Proposition 17.3(a) together with
Fact 17.2(d),(e) suggests that a closed convex set can be expressed as the intersec-
tion of possibly infinitely many simpler closed convex sets, each of which can be
expressed as the fixed point set of an efficiently computable quasi-nonexpansive
mapping. Moreover, by Proposition 17.3(b), given a quasi-nonexpansive mapping
N : H → H , we can construct a strongly attracting quasi-nonexpansive map-
ping T := (1−α)I+αN (α ∈ (0,1)) with Fix(T ) = Fix(N). Therefore the quasi-
nonexpansivemapping (or evenmore specifically the attractingmapping) has a great
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deal of potential not only as an computational tool for monotone approximation to
the closed convex set but also as an alternativemathematical expression of the closed
convex set as its fixed point set.

Proposition 17.3. (Fundamental Properties of Quasi-Nonexpansive Mapping)

(a) Let T :H → H be a quasi-nonexpansive mapping. Then Fix(T ) can be ex-
pressed as (see for example [8, 135]):

Fix(T ) =
⋂
y∈H

{
x ∈ H | 〈y−T(y),x〉 ≤ ‖y‖2−‖T (y)‖2

2

}
.

This tells us that Fix(T ) can be expressed as the intersection of infinitely many
closed half spaces, hence the closedness and convexity of Fix(T ) are guaran-
teed by Fact 17.2(d).

(b) A quasi-nonexpansive mapping T : H → H is α-averaged for some α ∈
(0,1) if and only if T is

( 1−α
α

)
-strongly attracting [135]. Therefore a quasi-

nonexpansive mapping T is 12 -averaged if and only if it is 1-strongly attracting.

In Proposition 17.4 below, (a) and (b) are slight refinement of similar results in
[7, Props 2.10 & 2.12 ]. By applying these properties, we can construct a new quasi-
nonexpansive mapping whose fixed point set is the intersection of the fixed point
sets of given multiple quasi-nonexpansive mappings in Examples 17.6 and 17.9 in
Section 17.2.3. Note that Proposition 17.4(c) holds evenwhen Fix(T1)∩Fix(T2)= /0.

Proposition 17.4. (Algebraic Properties of Quasi-NonexpansiveMapping)

(a) (Convex combination [135]) Suppose that Ti : H → H (i = 1,2) are quasi-
nonexpansive mappings satisfying Fix(T1)∩ Fix(T2) �= /0. Then for any w ∈
(0,1) the mapping T := wT1+ (1−w)T2 is quasi-nonexpansive and satisfies
Fix(T ) =Fix(T1)∩Fix(T2). In particular, if each Ti (i= 1,2) is αi(> 0)-strongly
attracting, then T is

(
(α1+1)(α2+1)

(1−w)α1+wα2+1 − 1
)
-strongly attracting.

(b) (Composition [135]) Let T1 :H → H be a quasi-nonexpansive mapping and
T2 :H → H an attracting quasi-nonexpansive mapping satisfying Fix(T1)∩
Fix(T2) �= /0. Then T := T2T1 is quasi-nonexpansive and Fix(T ) = Fix(T1)∩
Fix(T2). In particular, if each Ti (i= 1,2) is αi(> 0)-strongly attracting, then T

is
(

α1α2
α1+α2

)
-strongly attracting.

(c) (Operations for averaged nonexpansive mappings [100, 135]) Suppose that
each Ti :H → H (i= 1,2) is αi-averaged nonexpansive for some αi ∈ [0,1).
Then for every w ∈ [0,1], the mapping (1−w)T1+wT2 is {(1−w)α1+wα2}-
averaged nonexpansive. Moreover T1T2 is α-averaged nonexpansive for α :=
α1+α2−2α1α2

1−α1α2 ∈ [0,1).

Finally, for intuitive understanding, we explain briefly how the attracting map-
ping is connected in essence with signal processing.
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Remark 17.5. (A Role of Attracting Mapping in Signal Processing) Monotone ap-
proximation to an unknown desirable information to be estimated, say estimandum,
is one of the most favorable properties for signal processing algorithms. In partic-
ular, in adaptive filtering or adaptive system identification problems (e.g., adaptive
channel equalization, adaptive echo cancellation, etc), the algorithms are required,
at each time, to offer a tentative approximation of an estimandum. By utilizing a
priori knowledge as well as the latest statistical knowledge obtained from observed
data, the algorithm is desired to update the previous estimate to a better one which
is closer to the estimandum. A practical scenario to realize such a monotone approx-
imation is divided into the following two steps: (Step 1) define a set, say a target
set, which is sufficiently small but contains candidates consistent with all available
knowledge on the estimandum, and (Step 2) realize a mapping T which shifts any
point not in the target set strictly closer to every point in the target set and does not
move any point in the target set (see Fig.17.4). If the estimandum surely belongs to
the target set, the above scenario automatically realizes a monotone approximation
to the estimandum. The mapping satisfying the condition in Step 2 is called attract-
ing mapping. Obviously a point does not move by the mapping if and only if it is
already in the target set. Therefore the target set must be the fixed point set of the
attracting mapping. This observation suggests that a key to realize a successful sig-
nal processing algorithm is how to design an attracting mapping of which the fixed
point set is the target set. On the other hand, as seen in Proposition 17.3(a), the fixed
point set of any attracting mapping is a closed convex set. This simple but valuable
observation tells us that for realizing monotone approximation, the attracting map-
ping is certainly ideal, and in this case, the target set is ensured to be a closed convex
set. Moreover, if multiple attracting mappings with a common fixed point are given,
we can define in constructive ways a new attracting mapping whose fixed point set is
the intersection of the fixed point sets of the given mappings (see Proposition 17.4),
which is extremely fortunate for the refinement of the target set in Step 1. Therefore
the attracting mapping has a great deal of potential to be not only a computational
tool for monotone approximation to the closed convex set but also an alternative
mathematical expression of the closed convex set as its fixed point set.
In [139], it has been clarified that the adaptive filtering algorithms based on or-

thogonal projections [127, 80, 111] exploit the above feature of the attracting map-
ping implicitly. This discovery leads to a unified scheme called the Adaptive Pro-
jected Subgradient Method (APSM) [132, 134, 115]; this scheme is a time-varying
extension of the Polyak’s subgradient algorithm, which was developed for a non-
smooth convex optimization problem with a fixed target value, to the case where
the convex objective itself keeps changing in the whole process. Under this sim-
ple umbrella of the APSM, a unified convergence analysis has been established
for a wide range of adaptive algorithms. Moreover the APSM has been serving as
a guiding principle to create various powerful adaptive algorithms for acoustic sys-
tems [145, 144], wireless communication systems [143, 25, 26], distributed learning
for diffusion network [27], online learning in Reproducing Kernel Hilbert Spaces
[112, 113, 123], etc. Moreover, a steady-state mean-square performance analysis of
a simplest example of the APSM has been established in [121]; the analysis is based
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Fig. 17.4 What is the best possible strategy for a starving shark ? Maximal satisfaction is expected
by approaching monotonically every fish. This is realized by an attracting mapping.

on the energy conservation argument [111] developed specially for performance
analyses of adaptive filtering algorithms.

17.2.3 Toolbox of Quasi-Nonexpansive Mapping

We list particularly useful quasi-nonexpansive mappings called in this paper design
tool mappings. With the aid of Proposition 17.4, the design tool mappings can be
used as tools to design a new quasi-nonexpansive mapping whose fixed point set is
the intersection of their fixed point sets.

Example 17.6. (Design Tool Mappings)

(a) (Metric projection / Convex projection) Given a nonempty closed convex set
C in H , the metric projection PC :H →C is a firmly nonexpansive mapping
with Fix(PC) = C (see Fact 17.2(c)). The firm nonexpansivity of PC implies
that PC is also a 1-strongly attracting nonexpansive mapping (see Proposition
17.3(b)). Furthermore, the function ϕ1 : x �→ d2C(x) := ‖x−PC(x)‖2 is convex
and Gâteaux differentiable over H with its derivative ∇ϕ1(x) = 2(x−PC(x))
(∀x ∈ H ).

(b) (Proximal forward-backward splitting operator [103, 66, 125, 46]) Suppose that

S := arg min
x∈H

{ f1(x)+ f2(x)}

is nonempty for f1, f2 ∈ Γ0(H ), where f2 is Gâteaux differentiable on H
with its gradient ∇ f2 : H → H . Then x� ∈ H satisfies x� ∈ S if and only
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if x� ∈ H is a fixed point of the proximal forward-backward splitting op-
erator : proxµ f1 (I− µ∇ f2) for any µ > 0, i.e., x� = proxµ f1 (I− µ∇ f2) (x�).
If in addition ∇ f2 is κ-Lipschitzian for some κ > 0, the proximal forward-
backward splitting operator proxµ f1 (I− µ∇ f2) with µ ∈ (0, 2κ ] is nonexpan-
sive. Moreover, this operator is 1

2−γ -averaged nonexpansive if µ ∈
(
0, 2γκ

]
⊂(

0, 2κ
)
(Note: (i) The nonexpansivity of the proximal forward-backward split-

ting operator with µ ∈ (0, 2κ ] is confirmed by the nonexpansivity of proxµ f1
and the nonexpansivity of I − µ∇ f2 =

(
1− µ

2
κ

)
I + µ

2
κ

(
I− 2

κ ∇ f2
)
[see Fact

17.15 in Section 17.2.5]. (ii) The averaged nonexpansivity of the operator with

µ ∈
(
0, 2γκ

]
⊂ (

0, 2κ
)
is confirmed by applying Proposition 17.4(c) to the firm

nonexpansivity of proxµ f1 and the γ-averaged nonexpansivity of I− µ∇ f2 =

(1− γ)I+ γ
(
I− µ

γ ∇ f2
)
). In particular, setting f1 := iC for a closed convex set

C ⊂ H reproduces the characterization of the minimizers of f2 over C by the
fixed point set of the 1

2−γ -averaged nonexpansive mapping PC (I− µ∇ f2) for

µ ∈
(
0, 2γκ

]
⊂ (

0, 2κ
)
[40, 136, 20]. This is essentially same as the fixed point

characterization of the variational inequality problem as found in Fact 17.14 in
Section 17.2.5.

(c) (Douglas-Rachford splitting operator [89, 57, 42]) Let f1, f2 ∈ Γ0(H ) satisfy

S := arg min
x∈H

{ f1(x)+ f2(x)} �= /0.

Under the following qualification condition:

cone(dom( f1)− dom( f2)) :=
⋃
λ>0

{λx | x ∈ dom( f1)− dom( f2)}

is a closed subspace ofH , where
dom( f1)− dom( f2) := {x1− x2 ∈ H | xi ∈ dom( fi) (i= 1,2)},

 (17.11)

the Douglas-Rachford splitting type algorithm uses in principle the following
characterization: for any γ ∈ (0,∞)

x� ∈ H minimizes f1+ f2 ⇔
{
x� = proxγ f2(y),

y ∈ Fix
(
rproxγ f1 rproxγ f2

)
,

(17.12)

which means that S can be expressed as the image of proxγ f2 of the fixed point
set of the nonexpansive mapping rproxγ f1 rproxγ f2 (Note: The firm nonexpan-
sivity of proxγ fi , i = 1,2, guarantees the nonexpansivity of rproxγ fi (see Fact
17.2(b))).

(d) (Subgradient projection) Suppose that a continuous convex function f :H →R
satisfies lev≤0( f ) �= /0. Let f ′(x) ∈ ∂ f (x) (∀x∈H ) be a selection from the sub-
differential ∂ f (x) (Note: In this paper, we use the notation∇ f (x) for a Gâteaux
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Fig. 17.5 Subgradient projection as an approximation of metric projection (see (17.13) for the
definition of S f (x)).

differentiable function f to distinguish from f ′(x) for a nonsmooth one). Then
a mapping Tsp( f ) :H → H defined by

Tsp( f ) : x �→
{
x− f (x)

‖ f ′(x)‖2 f
′(x), if f (x) > 0;

x, otherwise,

is called a subgradient projection relative to f . For f (x) > 0, Tsp( f )(x) is
given by the metric projection of x onto the closed half-space {y ∈ H |
〈y− x, f ′(x)〉+ f (x) ≤ 0} ⊃ lev≤0( f ). Therefore Tsp( f ) is a 1-strongly attract-
ing quasi-nonexpansive mapping with Fix(Tsp( f )) = lev≤0( f ) (see, e.g., [126,
Lemma 2.8],[8] and Fig.17.5), hence Proposition 17.3(b) implies that 2Tsp( f )−I
is quasi-nonexpansive. The metric projection onto a closed convex set C can
also be interpreted as a subgradient projection relative to a continuous convex
function dC : x �→ ‖x−PC(x)‖, i.e., Tsp(dC) = PC. This fact is confirmed by

∂dC(x) =

{
{z ∈ H | ‖z‖ ≤ 1,〈z,y− x〉 ≤ 0,∀y ∈C} � 0, if x ∈C;
x−PC(x)
d(x,C) , otherwise.

If we can use more information on the function f ∈Γ0(H ), we may define other
strongly attracting mappings that realize better approximation to the set lev≤0( f ),
as shown below.

Proposition 17.7. (A Generalization of Subgradient Projection [102]) Let f :H →
R be a continuous convex function with lev≤0( f ) �= /0 and f ′ :H →H a selection
of the subdifferential ∂ f :H → 2H , i.e., f ′(x) ∈ ∂ f (x), ∀x ∈ H . Let ξ :H → R
be a function satisfying ξ (x)≥ f (x),∀x ∈ H . Suppose that
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Sξ (x) :=

{ {y ∈ H | 〈y− x, f ′(x)〉+ ξ (x)≤ 0}, if f (x) ≥ 0;
H , otherwise,

(17.13)

satisfies (O-i) Sξ (x) ⊃ lev≤0( f ), and (O-ii) x �∈ lev≤0( f ) ⇒ x �∈ Sξ (x). Then the
projection onto Sξ (x), i.e.,

Tdsp,ξ : x �→
{
x− ξ (x)

‖ f ′(x)‖2 f
′(x), if f (x) > 0;

x, otherwise,
(17.14)

is firmly quasi-nonexpansive with Fix(Tdsp,ξ ) = lev≤0( f ).

Remark 17.8. (Tdsp,ξ as a Deeper Outer Approximation) By the definition of sub-
gradient, S f (x) satisfies the conditions (O-i) and (O-ii) in Proposition 17.7. In this
special case, we have Tdsp, f = Tsp( f ), hence Tdsp,ξ :H → H is a generalization of
the subgradient projection relative to f . If ξ (x)> f (x)> 0, we have Sξ (x)� S f (x),
i.e., Sξ (x) is a deeper outer approximation (of lev≤0( f ) w.r.t. x) than S f (x). Sev-
eral constructions of such ξ (x)(> f (x)) have been discussed for example in [84,
Example 3.4], [102, 140].

Example 17.9. (Deepest Outer Approximation with Available Information)

(a) (Best quadratic lower bound with Lipschitz constant of gradient operator [140])
Suppose that (i) f ∈ Γ0(H ) is Gâteaux differentiable on H with its gradi-
ent ∇ f : H → H which is κ-Lipschitzian over H , and (ii) lev≤0( f ) �= /0
and f (x) ≥ −ρ (∃ρ ≥ 0, ∀x ∈ H ). Fix z ∈ H \ lev≤0( f ) arbitrarily, and let
g0,z(x) := 〈x− z,∇ f (z)〉+ f (z) (∀x ∈ H ). Then the function g1,z :H →R:

g1,z(x) :=


g0,z(x), if a≤ g0,z(x);

1
2
(g0,z(x)−b)2

a−b , if b≤ g0,z(x)≤ a;
−ρ , if g0,z(x)≤ b,

(17.15)

where a := −ρ+ ‖∇ f (z)‖2
2κ and b := −ρ− ‖∇ f (z)‖2

2κ , satisfies g0,z(x) ≤ g1,z(x) ≤
f (x) (∀x ∈ H ). This implies ξ (y) := g1,z(y)−〈y− z,∇ f (z)〉 ≥ g0,z(y)−〈y−
z,∇ f (z)〉 = f (z) (∀y ∈ H ), hence

lev≤0( f ) ⊂ lev≤0(g1,z) = {y ∈ H | 〈y− z,∇ f (z)〉+ ξ (z)≤ 0}= Sξ (z)

⊂ {y ∈ H | 〈y− z,∇ f (z)〉+ f (z) ≤ 0}= lev≤0(g0,z)
= S f (z). (17.16)

Moreover g1,z satisfies

(i) g1,z(x)|x=z = f (z) and ∇g1,z(x)|x=z = ∇ f (z),
(ii) f (x) ≥ g1,z(x) ≥ −ρ (∀x ∈ H ) and ‖∇g1,z(x)−∇g1,z(y)‖ ≤ κ‖x− y‖

(∀x,y ∈ H ).

(b) (Deepest outer approximating half-space of level set of a quadratic function
[102]) Suppose that a quadratic function f (x) := ‖Ax− b‖2− ρ (∀x ∈ H )
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satisfies lev≤0( f ) �= /0, where A : H → H ′ is a bounded linear operator
(H ′ is a real Hilbert space whose inner product and its induced norm are
also denoted by 〈·, ·〉 and ‖ · ‖ respectively), b ∈ H ′ and ρ ∈ R. Fix z ∈
H \ lev≤0( f ) arbitrarily and let ξτ (z) := 2

(
f (z)− τ−

√
( f (z)− τ)(−τ)

)
for

any τ ∈ [−ρ , infy∈H f (y)]. Then Sξτ (z)⊂ H satisfies

(i) lev≤0( f )⊂ Sξτ (z)� S f (z) for any τ ∈ [−ρ , infy∈H f (y)],

(ii) S̃ξτmin (z) ∩ lev≤0( f ) �= /0 for τmin := miny∈H f (y), where S̃ξτmin (z) is the
boundary hyperplane of Sξτmin (z).

17.2.4 Iterative Approximation of a Fixed Point of
Quasi-Nonexpansive Mapping

By introducing a real number sequence (αn)n≥0 ⊂ [0,1], the algorithm in the
Banach-Picard’s contraction mapping theorem has been extended to

xn+1 := (1−αn)xn+αnT (xn), (17.17)

where T is a quasi-nonexpansive mapping. To guarantee the weak convergence4 of
(xn)n≥0 to a fixed point of T , the demiclosedness of I−T at 0 ∈ H is required in
addition to some condition on (αn)n≥0, where, in general, a mapping G :H → H
is said to be demiclosed at y ∈ H if weak convergence of a sequence (xn)n≥0 ⊂ H
to x ∈ H and strong convergence of (G(xn))n≥0 to y ∈ H imply G(x) = y. It is
well-known [19] that the mapping I−T is demiclosed at every point y ∈ H if T :
H → H is nonexpansive. Moreover, if a continuous convex function f :H → R
satisfies lev≤0( f ) �= /0 and its subdifferential ∂ f :H → 2H is bounded in the sense
of Fact 17.2(a), the mapping I−Tsp( f ) is demiclosed at 0 ∈ H (see [126, Lemma
2.9],[8]).
The convergence theorem of the algorithm (17.17), which is called the Mann

iterative process, is summarized as follows.

Proposition 17.10. (Mann Iterative Process)
Let T :H → H be a quasi-nonexpansive mapping. Then for any initial point x0 ∈
H , the sequence (xn)n≥0 ⊂ H , generated by (17.17), converges weakly to a point
in Fix(T ), which depends on the choices of x0 ∈ H and the real number sequence
(αn)n≥0 ⊂ [0,1], under either of the following conditions.

4 (Strong and weak convergences) A sequence (xn)n≥0 in a real Hilbert spaceH is said to converge
strongly to a point x∈H if the real number sequence (‖xn−x‖)n≥0 converges to 0, and to converge
weakly to x ∈ H if the real number sequence (〈xn − x,y〉)n≥0 converges to 0 for every y ∈ H .
If (xn)n≥0 converges strongly to x, then (xn)n≥0 converges weakly to x. The converse is true if
H is finite dimensional, hence in finite dimensional case we do not need to distinguish these
convergences.
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(a) I−T is demiclosed at 0 ∈ H and (αn)n≥0 is bounded away from 0 and 1, i.e.,
there exist ε1,ε2 > 0 satisfying (αn)n≥0 ⊂ [ε1,1− ε2] [54].

(b) T is nonexpansive and
∑

n≥0αn(1−αn) = ∞ [74].

Remark 17.11. (Several Forms of Mann-type Iterates)

(a) The iterative algorithm shown in (17.17) is commonly referred to as “Mann
iterative process” because this has an alternative expression of

xn+1 :=
n∑
j=1

an, ju j and un+1 := T (xn) (17.18)

given in [93] if (an, j)0≤ j≤n,n≥0 ⊂ [0,1] satisfies an+1, j = (1−an+1,n+1)an, j and
αn = an+1,n+1 (n= 0,1,2, . . .).

(b) Suppose in particular (i) that T is α-averaged quasi-nonexpansive for some
α ∈ (0,1), i.e.,N := T−(1−α)I

α is quasi-nonexpansive, and (ii) that I−T is demi-
closed at 0∈H . Then the sequence (xn)∞n=0⊂H generated by any initial point
x0 ∈ H and

xn+1 := T (xn) = (1−α)xn+αN(xn)

converges weakly to a point in Fix(N) = Fix(T ).
(c) If N :H → H is firmly nonexpansive, i.e., T := 2N− I is nonexpansive with
Fix(T ) = Fix(N), the iteration (17.17) can be expressed equivalently as

xn+1 :=
(
1− tn

2

)
xn+

tn
2
(2N− I)(xn) = (1− tn)xn+ tnN(xn),

where the conditions for (αn)n≥0 ⊂ [0,1] in Proposition 17.10(a),(b) are re-
placed respectively by (tn)n≥0 = (2αn)n≥0 ⊂ [2ε1,2− 2ε2] and

∑
n≥0 tn(2−

tn) = ∞. This is a simplest case of a weak convergence theorem shown in [39]
under much weaker conditions in order to cope with the numerical errors pos-
sibly unavoidable in the iterative computations.

(d) (Elsner-Koltracht-Neumann [60]) Suppose that T : Rm → Rm is continuous as
well as attracting (In this case, the mapping T is said to be paracontractive).
Then for any initial point x0 ∈ Rm, the sequence (xn)n≥0 generated by xn+1 :=
T (xn) converges to a point in Fix(T ) (Note: This idea has been extended to the
case of Bregman distance [29]).

We have found many useful algorithms whose primitive convergence properties
can be examined simply by Proposition 17.10.

Example 17.12. (Mann Iterative Process Found in Applications)

(a) (POCS: Projections onto convex sets [18, 76, 142, 118]) Suppose that Ci ⊂
H (i = 1,2, . . . ,m) are closed convex sets satisfying

m⋂
i=1

Ci �= /0. Define λi
2 -

averaged nonexpansive mappings Ti : H → H (i = 1,2, . . . ,m), with λi ∈
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(0,2), by Ti := I+λi(PCi − I) =
(
1− λi

2

)
I+ λi

2 (2PCi − I), which obviously sat-

isfy Fix(Ti) =Ci (see Example 17.6(a)). Moreover, by Proposition 17.4 (c) and

(b), T = TmTm−1 · · ·T1 is averaged nonexpansive with Fix(T ) =
m⋂
i=1

Ci �= /0. Ap-

plying Remark 17.11(b) to T , we verify that the sequence (xn)n≥0 generated
by any x0 ∈ H and xn+1 := T (xn) (n= 0,1,2, . . .) converges weakly to a point

in
m⋂
i=1

Ci �= /0. This scheme is the so-called projections onto convex sets (POCS)

and applicable to convex feasibility problems.
(b) (Proximal forward-backward splitting method [103, 66, 125, 46]) Suppose that

S := arg min
x∈H

{ f1(x)+ f2(x)}

is nonempty for f1, f2 ∈ Γ0(H ), where f2 is Gâteaux differentiable on H
with its κ-Lipschitzian gradient ∇ f2 : H → H . Then, for any µ ∈ (

0, 2κ
)
,

the sequence (xn)n≥0 generated by any initial point x0 ∈ H and xn+1 :=
proxµ f1 (I− µ∇ f2)(xn) convergesweakly to a point in S. This scheme is the so-
called proximal forward-backward splitting method which can be interpreted as
a direct application of Remark 17.11(b) to Example 17.6(b).

(c) (Projected gradient method [71, 86]) LetC⊂ H be a closed convex set and f :
H →R a Gâteaux differentiable convex function satisfying argminx∈C f (x) �=
/0. Suppose that the derivative∇ f :H →H is κ-Lipschitzian overH for some
κ > 0. Then for any µ ∈ (0, 2κ ), the sequence (xn)n≥0 generated by any initial
point x0 ∈ H and xn+1 := PC (xn− µ∇ f (xn)) converges weakly to a point in
argminx∈C f (x). This scheme is the so-called projected gradient method which
can be interpreted as a direct application of Example 17.12(b) to f1 = iC and
f2 := f .

(d) (PPM: Parallel projection method [34, 40]) Suppose that K ⊂ H and Ci ⊂
H (i = 1,2, . . . ,m) are nonempty closed convex sets possibly having K ∩
(
⋂m
i=1Ci) = /0. Suppose also that themean squared distance function:Φms(x) :=

1
2

∑m
i=1wid

2
Ci
(x) has its minimizer over K, i.e., KΦms := argminx∈KΦms(x) �= /0,

where wi > 0 (i = 1,2, . . . ,m) and
∑m

i=1wi = 1. Then the sequence (xn)∞n=0
generated by any µ ∈ (0,2), any x0 ∈ H and

xn+1 := PK

(
(1− µ)xn+ µ

∑
i

wiPCi(xn)

)

converges weakly to a point in KΦms . This scheme is the so-called parallel pro-
jection method (PPM) and applicable to inconsistent convex feasibility prob-
lems. The PPM can be interpreted as a direct application of Example 17.12(c)
to f (x) =Φms(x).

(e) (Projected Landweber method [58, 75]/ CQ-algorithm [20, 21]) Let Ho be a
real Hilbert space equipped with an inner product 〈·, ·〉o and its induced norm
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‖ · ‖o. Suppose that the operator A : H → Ho is linear and bounded, i.e.,

‖A‖ := sup
x∈H \{0}

‖A(x)‖o
‖x‖ < ∞, and that a closed convex setC⊂H and b∈Ho

satisfy S1 := argmin
x∈C

‖A(x)− b‖2o �= /0. Then for any µ ∈ (0,2‖A‖−2), the se-
quence (xn)n≥0 generated by any point x0 ∈ H and

xn+1 := PC (xn− µA∗A(xn)+ µA∗(b))

converges weakly to a point inS1, where A∗ :Ho →H is the adjoint operator
of A [141, 48, 85, 133, 10]. This scheme is the so-called projected Landwe-
ber method and applicable to convexly constrained inverse problems. The pro-
jected Landweber method can be interpreted as a direct application of Example
17.12(c) to f (x) = 1

2‖A(x)− b‖2o.
On the other hand, for given a pair of closed convex sets C ⊂ H and Q⊂ Ho,
the problem for finding a point x ∈ H satisfying x ∈C and A(x) ∈ Q is called
the split feasibility problem (SFP). Since the SFP is reduced to a problem for
finding a point in

S2 := argmin
x∈C

‖PQA(x)−A(x)‖2o �= /0,

a direct application of Example 17.12(c) to f (x) = 1
2‖PQA(x)−A(x)‖2o leads to

the algorithm: xn+1 := PC (xn− µA∗(I−PQ)A(xn)), which generates a weakly
convergent sequence (xn)n≥0 to a point inS2 for any µ ∈ (0,2‖A‖−2) and any
point x0 ∈ H . This scheme is the so-called CQ-algorithm and applicable to
split feasibility problems (Note: The Mann iterative process has been applied to
many other types of inverse problems. For example, an elliptic Cauchy problem
was solved in [61] with Proposition 17.10(b) as a fixed point problem for a
nonexpansive affine operator in a Hilbert space).

(f) (Douglas-Rachford splitting method [89, 57, 42]) Let f1, f2 ∈ Γ0(H ) satisfy

S := arg min
x∈H

{ f1(x)+ f2(x)} �= /0.

Under the condition (17.11), the sequence (xn)∞n=0 generated by

xn+1 := (1−αn)xn+αnrproxγ f1 rproxγ f2(xn), (17.19)

for any x0 ∈H , any γ ∈ (0,∞) and any (αn)n≥0⊂ [0,1] satisfying
∑

n≥0αn(1−
αn) = ∞, converges weakly to a point in (proxγ f2)

−1(S). The scheme (17.19)
can be interpreted as a direct application of Proposition 17.10(b) to Exam-
ple 17.6(c). Moreover, with use of (tn)n≥0 := (2αn)n≥0 ⊂ [0,2] satisfying∑

n≥0 tn(2− tn) = ∞, the scheme (17.19) can be expressed equivalently as

xn+1 := xn+ tn
{
proxγ f1

(
2proxγ f2(xn)− xn

)
− proxγ f2(xn)

}
, (17.20)
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which is a simplest example of the so-called Douglas-Rachford splitting type
algorithm in [42, Theorem 20]. In particular, if dim(H )<∞, the nonexpansiv-
ity of proxγ f2 and the weak convergence of (xn)

∞
n=0 by (17.19) [or by (17.20)]

to a point, say

y� ∈ (proxγ f2)
−1(S)(⇔ proxγ f2(y

�) ∈ S),

guarantee

‖proxγ f2(xn)− proxγ f2(y�)‖ ≤ ‖xn− y�‖→ 0 (n→ ∞).

(g) (Subgradient method [106]) Let f :H → R be a continuous convex function
satisfying lev≤0( f ) �= /0. Define a sequence (xn)n≥0 ⊂ H with any initial point
x0 ∈ H and

xn+1 :=

{
xn−λn

f (xn)

‖ f ′(xn)‖2
f ′(xn), if f (xn)> 0;

xn, otherwise,
(17.21)

where f ′(xn) ∈ ∂ f (xn) for f (xn) > 0, and (λn)n≥0 ∈ (0,2) is bounded away
from 0 and 2. Then the iteration (17.21) can be expressed as

xn+1 =

[(
1− λn

2

)
I+

λn
2
T

]
(xn),

where T := 2Tsp( f ) − I. In particular, if the subdifferential ∂ f : H → 2H is
bounded in the sense of Fact 17.2(a), I−T is demiclosed at 0 ∈ H (see the
first paragraph of Section 17.2.4), hence Proposition 17.10(a) guarantees the
weak convergence of (xn)∞n=0 to a point in Fix(T ) = Fix(Tsp( f )) = lev≤0( f ).
This method is very useful for the following convex feasibility problems. Sup-
pose that continuous convex functions fi : H → R (i = 1,2, . . . ,m) satisfy⋂m
i=1 lev≤0( fi) �= /0. Then, by defining a single convex function f :H →R sat-

isfying lev≤0( f ) =
⋂m
i=1 lev≤0( fi), for example by f (x) := max

m
i=1 fi(x) or by

f (x) :=
∑m

i=1wi f
+
i (x) with f+i (x) =max{ fi(x),0} and wi > 0 (i= 1,2, . . . ,m),

we can reformulate the problem of finding a point in the nonempty intersec-
tion of the closed convex sets lev≤0( fi) to the problem of finding a point in
lev≤0( f ). Indeed, if f ′i (xn) ∈ ∂ fi(xn) (i = 1,2, . . . ,m) are available to compute
f ′(xn) ∈ ∂ f (xn) with the well-known calculus rules [81] and ∂ f :H → 2H is
bounded, we can generate a weakly convergent sequence to a point in lev≤0( f )
by applying (17.21) to f .
Moreover, if Plev≤0( fi) :H → lev≤0( fi) (i= 1,2, . . . ,m) are available, an appli-
cation of (17.21) with the aid of Example 17.6(a) to

f (x) :=
1
2

m∑
i=1

wid
2
lev≤0( fi)(x) =

1
2

m∑
i=1

wi‖x−Plev≤0( fi)(x)‖2
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leads immediately to a version of the parallel projection algorithm [7, 30, 34]
for convex feasibility problems.

17.2.5 Monotonicity of Derivatives of Convex Functions,
Variational Inequality Problems

AmappingF :H →H is called (i)monotone over S⊂H if 〈F(u)−F(v),u− v〉≥
0 for all u,v ∈ S. In particular, a mapping F which is monotone over S ⊂ H is
called (ii) paramonotone over S if 〈F(u)−F(v),u− v〉= 0⇔ F(u) = F(v) for all
u,v∈ S; (iii) η-inverse strongly monotone (or firmly monotone) over S if there exists
η > 0 such that 〈F(u)−F(v),u− v〉 ≥ η ‖F(u)−F(v)‖2 for all u,v ∈ S [90]; (iv)
η-strongly monotone over S if there exists η > 0 such that 〈F(u)−F(v),u− v〉 ≥
η‖u− v‖2 for all u,v ∈ S [148].
Given F : H → H which is monotone over a nonempty closed convex set

C ⊂ H , the variational inequality problem VIP(F,C) is defined as follows: find
u� ∈ C such that 〈u− u�,F(u�)〉 ≥ 0 for all u ∈ C. If a function f ∈ Γ0(H ) is
Gâteaux differentiable over an open setU ⊃C, then the derivative∇ f is paramono-
tone over C [28]. In this case, the solution set of VIP(∇ f ,C) is nothing but the set
argmin

x∈C
f (x) provided that it is nonempty (see, e.g., [59, Proposition II.2.1] and [133,

Theorem 7.7]).
The following facts are quite useful for translating a convex optimization prob-

lem into a fixed point problem.

Fact 17.13. (Properties of Variational Inequality Problem) [28, 59] Let F :H →H
be monotone and continuous over a nonempty closed convex set C ⊂ H . Then

(a) u� is a solution of VIP(F,C) if and only if, for all u ∈C, 〈F(u),u− u�〉 ≥ 0.
(b) Suppose that (i) F is paramonotone overC, (ii) u� ∈C is a solution ofVIP(F,C)

and (iii) u ∈ C satisfies 〈F(u),u − u�〉 = 0. Then u is also a solution of
VIP(F,C).

The characterization in (17.9) of the convex projection PC yields at once an alter-
native interpretation of the VIP as a fixed point problem.

Fact 17.14. (VIP as a Fixed Point Problem) Given F :H →H which is monotone
over a nonempty closed convex setC, the following three statements are equivalent.

(a) u� ∈C is a solution of VIP(F,C); i.e.,

〈v− u�,F(u�)〉 ≥ 0 for all v ∈C.

(b) For an arbitrarily fixed µ > 0, u� ∈C satisfies

〈v− u�,(u�− µF(u�))− u�〉 ≤ 0 for all v ∈C.
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(c) For an arbitrarily fixed µ > 0,

u� ∈ Fix(PC (I− µF)) . (17.22)

Fact 17.15. (Baillon-HaddadTheorem [56, 72, 4, 90, 9]) Let f ∈Γ0(H ) beGâteaux
differentiable with its gradient ∇ f :H → H . Then the following three statements
are equivalent.

(a) ∇ f is κ-Lipschitzian overH .
(b) ∇ f is 1/κ-inverse strongly monotone overH .
(c) I− 2

κ ∇ f :H → H is nonexpansive overH .

Remark 17.16. (On Fact 17.15)

(a) The equivalence of Fact 17.15(b) and Fact 17.15(c) is confirmed by a simple
algebra.

(b) Fact 17.15(c) guarantees that κ-Lipschitz continuity of∇ f implies µκ2 -averaged
nonexpansivity of I− µ∇ f =

(
1− µκ

2

)
I+ µκ

2

(
I− 2

κ ∇ f
)
for any µ ∈ (0, 2κ ).

17.3 Minimizing Moreau Envelope by Hybrid Steepest Descent
Method

17.3.1 Moreau Envelope and Its Derivative

The Moreau envelope has surprisingly nice properties as follows.

Fact 17.17. (Distinctive Properties of Moreau Envelope (see, e.g., [97, 98, 108,
46])) Given a function f ∈ Γ0(H ), the Moreau envelope γ f :H →R of f of index
γ ∈ (0,∞) in (17.2) satisfies the following.

(a) (Lower bound) (∀γ ∈ (0,∞), ∀x ∈ H ) f (x) ≥ γ f (x).
(b) (Convergence) The function γ f converges pointwise to f on dom( f ) as γ → 0,

i.e.,
lim
γ↓0

γ f (x) = f (x) (∀x ∈ dom( f )).

Moreover, if f is uniformly continuous on a bounded set S ⊂ dom( f ), γ f con-
verges uniformly to f on S, i.e., lim

γ↓0
sup
x∈S

|γ f (x)− f (x)| = 0. In particular, if f
is continuous on a compact set S ⊂ dom( f ), the Heine’s theorem [1, Theorem
4.47] guarantees the uniform convergence of γ f to f on S.

(c) (Lipschitz continuity of Fréchet derivative) γ f : H → R is Fréchet differen-
tiable and its derivative is given by

∇γ f (x) =
x− proxγ f (x)

γ
=
x− (I+ γ∂ f )−1 (x)

γ
, (17.23)
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hence ∇γ f (x) is 1γ -Lipschitzian (Note: The firm nonexpansivity of I−proxγ f is
guaranteed by the nonexpansivity of 2(I− proxγ f )− I =−rproxγ f ).
The benefits of the Moreau envelope in applied sciences have been examined for

the absolute value function | · | :R→ [0,∞). By a simple algebra, we verify that the
Moreau envelope of the absolute value function is given explicitly by

γ |t| :=
{

1
2γ t

2, if |t| ≤ γ ;

|t|− 1
2γ, otherwise.

(17.24)

As pointed out in [15, 95], this is clearly equal, up to a scaling factor γ , to the
so-called Huber’s M cost function [82]

ρ :R→R, t �→
{ 1
2 t
2, if |t| ≤ γ ;

γ|t|− 1
2γ
2, otherwise,

(17.25)

in the context of robust linear estimation theory. The Huber’s M cost function has
been used in an estimation problem:

find x� ∈ argmin
x∈Rn

m∑
i=1

ρ ((Ax− b)i) , (17.26)

where A ∈ Rm×n represents the underlying linear model, b ∈ Rm is the data vector,
and x ∈ Rn is the parameter vector. A solution to (17.26), often referred to as anM-
estimator, is known as a robust alternative to the Least Squares (LS) estimator that
is unfortunately sensitive against occurrence of outliers in the ill-conditioned linear
regression systems. Computational algorithms for the problem (17.26) are found
for example in [95, 87, 16, 92]. In particular, a computational algorithm was given
in [16] to a convexly constrained version of the problem (17.26) provided that the
metric projection onto the constraint set is possible to compute efficiently.
The Huber’s M cost function has also been used in many inverse problems [99,

24, 2, 78] as an excellent robust convex penalty function that grows linearly for t
far from zero, hence it achieves least sensitivity to large outliers of large residual.
We can also observe that the derivative of γ | · | is always 1γ -Lipschitzian over R as
mentioned in Fact 17.17(c), while the derivative of a straightforward smooth convex
approximation | · |p :R→ [0,∞) for any 1< p< 2 can never be Lipschitz continuous
over R due to

lim
t↓0
(
p(p− 1)t p−2)= ∞.

This means that the Moreau-Yosida regularization offers a unified systematic strat-
egy to realize a beautiful parametrized smooth convex approximation for general
convex functions in Γ0(H ). Nevertheless, the use of the Moreau envelope and the
proximity operator has been very limited for many years in real world applications.
This is mainly due to the evident computational difficulty in the definition (17.2),
i.e., we have to minimize a possibly nonsmooth convex function f (·)+ 1

2γ ‖x− ·‖2
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for each x∈H to obtain the proxγ f (x)∈H . Although this computational difficulty
has never been resolved in general, the effectiveness of the proximity operator has
been confirmed in relatively simple finite dimensional scenarios where f ∈ Γ0(Rn)
can be expressed in terms of fi ∈ Γ0(R) (i= 1,2, . . . ,n) by

f :Rn → R : (x1, . . . ,xn) �→
n∑
i=1

fi(xi), (17.27)

hence
proxγ f (x1, . . . ,xn) =

(
proxγ f1(x1), . . . ,proxγ fn(xn)

)
.

In such a case, the computation of proxγ f (x1, . . . ,xn) is reduced to finding the

unique minimizer proxγ fi(xi) of each univariate convex function fi(·)+ 1
2γ |xi− ·|2

(i= 1, . . . ,n).
Next we list such useful examples including the soft-thresholding operator, which

was developed originally for denoising [53]. Fortunately, the proximity operators of
these examples have closed form expressions (Note: Many other useful formulae on
the proximity operator are found for example in [46, 45]).

Example 17.18. (Closed Form Expressions of Some Proximity Operators [46])

(a) If f ∈ Γ0(R) is defined by

f : x �→
{− ln(x) if x> 0;
∞ if x≤ 0,

we have for any γ ∈ (0,∞)

proxγ f (x) =
1
2

(
x+

√
x2+ 4γ

)
.

(b) Let {ek}nk=1 be an orthonormal basis of Rn where the standard inner product
is defined. Define a function f ∈ Γ0(Rn) by f : Rn � x �→∑n

k=1 fk(〈x,ek〉) ∈
(−∞,∞], where fk ∈ Γ0(R) satisfies fk(xk) ≥ 0 (∀xk ∈ R) and fk(0) = 0 (k =
1,2, . . . ,n). Then we have

prox f (x) =
n∑

k=1

(
prox fk(〈x,ek〉)

)
ek (x ∈ Rn).

(c) In particular, if we define, as a special example of (b),

f :Rn � x �→
n∑

k=1

ωk|〈x,ek〉| ∈ R,

with constant weights ωk > 0 (k = 1,2, . . . ,n), we have
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prox f (x) =
n∑

k=1

sgn(〈x,ek〉)max{|〈x,ek〉|−ωk,0}ek (x ∈ Rn).

The proximity operator in Example 17.18(c) is called the soft-thresholding / shrink-
age [53, 51] and has been used widely for example in noise removal problems
and in sparse matrix completion problems [32, 47, 22]. As seen from Example
17.18(c) for n = 1, the derivative of the Moreau envelope γ f (x) of the absolute
value function f (x) = |x| can be computed with lower complexity than the deriva-
tive of fε (x) :=

√
x2+ ε (ε > 0) of which the use as a smooth approximation of f

has been found in the literature.

To compute the proximity operator of f ∈ Γ0(Rn) in more complex cases where
the decomposition of f as in (17.27) is hard, fundamental theorems in convex anal-
ysis have been utilized implicitly or explicitly; e.g., the Fenchel-Rockafeller duality
theorem [108] was used in [31, 46, 62] to compute the proximity operator of cer-
tain functions such as the total variation function. The following proposition and its
corollary explain directly such strategies.

Proposition 17.19. (Expression of Proximity Operator by Legendre-Fenchel Trans-
form) Let ϕ ∈ Γ0(Rm), L ∈ Rm×n and d ∈ int(S), where

S := L(Rn)− dom(ϕ) := {Lx− y ∈Rm | x ∈ Rn and y ∈ dom(ϕ)}

and int(S) stands for the interior of S. Define ϕ̃ ∈ Γ0(Rn) by ϕ̃ : x �→ ϕ(Lx− d).
Then for arbitrarily fixed x ∈ Rn and γ ∈ (0,∞),

proxγϕ̃ (x) := argmin
z∈Rn

(
ϕ̃(z)+

1
2γ

‖x− z‖2
)
= argmin

z∈Rn

(
ϕ(Lz− d)+

1
2γ

‖x− z‖2
)

can be expressed, with ȳ ∈ arg min
y∈Rm

(
ϕ∗(y)+ 〈d,y〉+ 1

2γ
‖γLty− x‖2

)
, by

proxγϕ̃ (x) = x− γLt ȳ,

where Lt ∈Rn×m denotes the transpose of a matrix L and ϕ∗ the (Legendre-Fenchel)
conjugate of ϕ (see Fact 17.2(a)).

Proof. Clearly φ(z) := 1
2γ ‖x− z‖2 (∀z ∈ Rn) has dom(φ) = Rn, which implies

d ∈ int(S)⇔−d ∈ int(−L(dom(φ))+ dom(ϕ)), where −L(dom(φ))+ dom(ϕ) =
{−L(x)+ y ∈ Rm | x ∈ dom(φ) and y ∈ dom(ϕ)}. It is also obvious that the con-
jugate of φ ∈ Γ0(Rn) is given by φ∗(u) = 1

2γ (‖γu+ x‖2−‖x‖2) (∀u ∈ Rn) with
dom(φ∗) = Rn, which implies

0 ∈ int(−Lt (dom(ϕ∗))− dom(φ∗)
)

= {−Lt(y)− u | y ∈ dom(ϕ∗) and u ∈ dom(φ∗)}
= Rn. (17.28)
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Therefore, by applying the Fenchel-type duality scheme (see for example [108, Ex-
ample 11.41]), we deduce

−L∗ȳ ∈ ∂φ(proxγϕ̃ (x)) =
{
∇φ(proxγϕ̃(x))

}
=

{
1
γ

(
proxγϕ̃(x)− x

)}
,

where

ȳ ∈ argmax
y∈Rm

{〈−d,y〉−ϕ∗(y)−φ∗(−Lty)}
= arg min

y∈Rm

{
ϕ∗(y)+ 〈d,y〉+ 1

2γ
(‖− γLty+ x‖2−‖x‖2)

}
.

�

Corollary 17.20. (Proximity Operator of Affinely Pre-composed �1-Norm Func-
tion) Let ϕ ∈ Γ0(Rm) be defined by ϕ : (y1, . . . ,ym) �→

∑m
i=1 |yi|. Then for any

L ∈ Rm×n and d ∈ Rm, the proximity operator of the function ϕ̃ : x �→ ϕ(Lx− d)
of index γ ∈ (0,∞) is given by proxγϕ : R

n → Rn,x �→ x− γLt ȳ, where

ȳ ∈ argmin
y∈C

(
〈d,y〉+ 1

2γ
‖γLty− x‖2

)
(17.29)

with
C := {y= (y1, . . . ,ym) ∈ Rm | |yi| ≤ 1 (i= 1, . . . ,m)} . (17.30)

Proof. By dom(ϕ) =Rm, we have S= L(Rn)−dom(ϕ) =Rm and d ∈ int(S) =Rm.
Moreover, by [17, Example 3.26], the conjugate of ϕ is given by ϕ∗ = iC. Therefore,
ȳ ∈ Rm in Proposition 17.19 can be characterized by

ȳ ∈ arg min
y∈Rm

(
iC(y)+ 〈d,y〉 +

1
2γ

‖γLty− x‖2
)

= argmin
y∈C

(
〈d,y〉+ 1

2γ
‖γLty− x‖2

)
.

�

The computation of the proximity operator proxγiC = PC is immediate for C in
(17.30), i.e.,

PC : R
m →C, (x1, . . . ,xm) �→ (y1, . . . ,ym) , where yi :=

{
xi if|xi| ≤ 1
xi
|xi| if|xi|> 1

,

(17.31)
which implies that the solution of the smooth minimization problem (17.29) can
be approximated efficiently for example by the projected gradient method [71] or
many other improved algorithms (see, e.g., [11, 12]).
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17.3.2 Hybrid Steepest Descent Method

As seen in Section 17.3.1, minimization of the Moreau-Yosida regularization of a
possibly nonsmooth convex function Φ ∈ Γ0(H ) can be reduced to minimization
of a smooth convex function whose gradient is Lipschitz continuous. In this section,
we consider the following problem for minimizing such a smooth convex function
over the fixed point set of certain quasi-nonexpansive mappings.

Problem 17.21. (Convex Optimization over the Fixed Point Set of Nonlinear Map-
ping) Let T : H → H be a quasi-nonexpansive mapping whose fixed point set
Fix(T ) = {x ∈ H | T (x) = x} is nonempty. Suppose that Θ ∈ Γ0(H ) is Gâteaux
differentiable with the gradient∇Θ which is κ-Lipschitzian over T (H ) := {T (x) ∈
H | x ∈ H }. Then the problem is: find a point in the solution set

Ω :=

{
x� ∈ Fix(T ) |Θ(x�) = min

x∈Fix(T )
Θ(x)

}
= {x� ∈ Fix(T ) | 〈x− x�,∇Θ(x�)〉 ≥ 0 (∀x ∈ Fix(T ))} �= /0. (17.32)

The hybrid steepest descent method (see, e.g., [137, 49, 138, 136, 100, 101, 129,
135, 120, 91, 83, 150, 33]) :

un+1 := T (un)−λn+1∇Θ (T (un)) , (17.33)

is an extremely simple algorithmic solution to Problem 17.21, where (λn)n≥1 ⊂
[0,∞) is a slowly decreasing nonnegative sequence. Amongmany convergence anal-
yses on the algorithm (17.33), we introduce the following simple ones.

Theorem 17.22. (Hybrid Steepest Descent Method for Quasi-Nonexpansive Map-
pings)

I. (Strong convergence for nonexpansivemapping [131, 136]) Let T :H →H be
a nonexpansive mapping with Fix(T ) �= /0. Suppose that the gradient ∇Θ is κ-
Lipschitzian and η-strongly monotone over T (H ), which guarantees |Ω |= 1.
Then, by using any sequence (λn)n≥1 ⊂ [0,∞) satisfying (W1) limn→∞λn = 0,
(W2)

∑
n≥1λn=∞, (W3)

∑
n≥1 |λn−λn+1|<∞ [or (λn)n≥1⊂ (0,∞) satisfying

(L1) limn→∞ λn = 0, (L2)
∑

n≥1λn = ∞, (L3) limn→∞(λn− λn+1)λ−2
n+1 = 0],

the sequence (un)n≥0 generated, for arbitrary u0 ∈ H , by (17.33) converges
strongly to the uniquely existing point u� ∈Ω in (17.32).

II. (Nonstrictly convex optimization I [100, 101]) Assume dim(H ) < ∞. Sup-
pose that (i) T :H →H is an attracting nonexpansive mappingwith bounded
Fix(T ) �= /0, (ii) ∇Θ is κ-Lipschitzian over T (H ). If the following condition
(a) or (b) is fulfilled, then Ω �= /0 automatically holds and the sequence (un)n≥0
generated by (17.33), for arbitrary u0 ∈ H , satisfies lim

n→∞
d (un,Ω) = 0.

(a) The nonnegative sequence (λn)n≥1 in (17.33) satisfies (W1), (W2) and
(λn)n≥1 ∈ �2, i.e.,

∑
n≥1λ

2
n < ∞.

(b)
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(i) T is asymptotically shrinking; i.e., there exists R> 0 satisfying

sup
‖u‖≥R

‖T (u)‖
‖u‖ < 1

(In this case, the nonemptiness and boundedness of Fix(T ) automati-
cally hold (see [100])), and

(ii) the nonnegative sequence (λn)n≥1 in (17.33) satisfies (W1) and (W2).

III. (Nonstrictly convex optimization II [135]) Assume dim(H ) < ∞. Suppose f :
H →R is a continuous convex function with lev≤0( f ) �= /0. Let f ′ :H → H
be a selection of the subdifferential ∂ f and let f ′ be bounded on any bounded
set. Assume (i) ξ (x)≥ f (x), ∀x ∈ H , and (ii) Sξ (x) (in Proposition 17.7) sat-
isfies (O-i) and (O-ii) for all x ∈ H . Let Tα := (1−α)I+αTdsp,ξ , ∀α ∈ (0,2),
where Tdsp,ξ is defined in (17.14). Let K ⊂ H be a bounded closed con-
vex set satisfying K ∩ lev≤0( f ) �= /0, which implies that T := PKTα satisfies
Fix(T ) = K∩ lev≤0( f ) �= /0. Suppose thatΘ ∈Γ0(H ) is Gâteaux differentiable
over K where the gradient ∇Θ is κ-Lipschitzian. Then Ω �= /0 automatically
holds and the sequence (un)n≥0 generated by (17.33), for any u0 ∈ H and
α ∈ (0,2), satisfies lim

n→∞
d (un,Ω) = 0 if (λn)n≥1 ⊂ [0,∞) is chosen to satisfy

(W1) and (W2).

The algorithm (17.33) was established originally as a generalization of the fol-
lowing fixed point iteration [77, 88, 128, 6] so-called Halpern-type iteration (or
anchor method):

un+1 := λn+1a+(1−λn+1)T (un), (17.34)

which converges strongly to PFix(T)(a) for a nonexpansive mapping T : H → H
and a ∈ H .

Remark 17.23. (Conditions on (λn)n≥1 ⊂ [0,∞) in (17.33))

(a) (Necessary condition [77]) lim
n→∞

λn = 0 and
∑
n≥1

λn = ∞ are necessary to ensure

the convergence of (un)n≥0 to a point in Ω . Indeed, in the simple case ofH :=
R, T (x) := 1 (∀x ∈R) andΘ(x) = 1

2x
2 (∀x ∈R), the method (17.33) is reduced

to
un+1 := (1−λn+1)T (un) = 1−λn+1, n= 0,1,2, . . . ,

hence limn→∞λn= 0 is necessary for limn→∞ un= 1∈ Fix(T ) = {1}. Moreover,
in the case of H := R, T (x) := −x (∀x ∈ R) and Θ(x) = 1

2x
2 (∀x ∈ R), the

method (17.33), for u0 = 1, is reduced to

un+1 := (1−λn+1)T (un) = (−1)n
n∏
i=0

(1−λi+1), n= 0,1,2, . . . ,

from which
∏∞

i=0(1− λi+1) = 0 (⇔∑∞
n=1λn = ∞ when limn→∞ λn = 0 and

(λn)n≥1 ⊂ [0,1)) is necessary for limn→∞ un = 0 ∈ Fix(T ) = {0}.
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(b) (Sufficient condition) For the formula (17.34), the set of conditions (L1)–(L3)
for (λn)n≥1 ⊂ (0,1] was introduced in [88] while (W1)–(W3) for (λn)n≥1 ⊂
[0,1]was introduced in [128]. [Note: λn := 1/nρ for 0< ρ < 1 is a simple exam-
ple of the sequence (λn)n≥1 satisfying (L1)–(L3). The set of conditions (W1)–

(W3) allows the case λn = 1
n ]. The condition (L3) was relaxed to limn→∞

λn
λn+1

= 1

in [129], which allows the case λn = 1
n . Moreover, if T is an averaged nonex-

pansive mapping, it was shown in [83] that the (W1) and (W2) for (λn)n≥1 are
sufficient to guarantee the strong convergence of (17.33) to the unique point in
Ω under the scenario of Theorem 17.22-I (The sufficiency of (W1) and (W2) to
guarantee the strong convergence of (17.34) to PFix(T )(a) was shown in [119]).

Remark 17.24. (Hybrid Steepest Descent Method as an Extension of the Proximal
Forward-Backward Splitting)

(a) Under the same conditions imposed in Theorem 17.22-I, the sequence vn :=
T (un) (n= 0,1,2, . . .) generated, for any v0 := T (u0) ∈ T (H ), by

vn+1 := T (I−λn+1∇Θ)(vn), (17.35)

satisfies

0≤ ‖vn− u�‖= ‖T (un)− u�‖ ≤ ‖un− u�‖→ 0 (n→ ∞). (17.36)

The formula (17.35) is regarded as a (partial) generalization of the proximal
forward-backward splitting in Example 17.12(b). Moreover, we can deduce
from (17.35) a generalization [136, Remark 2.17(a)] of an algorithm in [109]
(a version of projected Landweber method [13, 58, 75]) developed for the con-
vexly constrained least-squares problems.

(b) If the strict convexity of Θ ∈ Γ0(H ) is assumed additionally in Theorems
17.22-II and III, the solution set becomes a singletonΩ = {u�}. In such a case,
lim
n→∞

d (un,Ω) = 0 in Theorems 17.22-II and III is equivalent to

lim
n→∞

‖un− u�‖= 0,

hence the relation (17.36) is again applicable to the sequence (vn)n≥0 generated
by (17.35), which guarantees the convergence of (vn)n≥0 to u�. In [64, Theorem
2], a similar algorithm to (17.35) is found specially for T = Tsp( f ).

Clearly, we can apply the hybrid steepest descent method (17.33) in Theorem
17.22 (or its alternative form (17.35)) to minimization ofΘ :H → R : x �→ γΦ(x),
which is the Moreau-Yosida regularization of a possibly nonsmooth convex func-
tion Φ ∈ Γ0(H ) of the index γ > 0, over the fixed point set of a certain quasi-
nonexpansive mapping T :H →H . In such a scenario, the 1γ -Lipschitz continuity
of the gradient ∇Θ :H → H is guaranteed automatically by Fact 17.17(c), which
is the only requirement for∇Θ in Theorem 17.22-II & III. By applying Propositions
17.3, 17.4 and 17.7, to various mappings in Examples 17.6 and 17.9, we can design
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many efficiently computable quasi-nonexpansive mappings as T whose fixed point
set Fix(T ) is desirable as the constraint set.

17.4 Application to Minimal Antenna-Subset Selection Problem
for MIMO Communication Systems

We have proposed a promising approach by an integration of the ideas of the hy-
brid steepest descent method and the Moreau-Yosida regularization to the chal-
lenging nonsmooth convex optimization over the fixed point set of certain quasi-
nonexpansive mappings. We present in this section its nontrivial application to a
minimal antenna-subset selection problem for efficient MIMO systems (Note: The
contents of this section have partially been presented in [146]).

17.4.1 Backgrounds and Motivations

Multiple antenna systems, broadly-termed MIMO (multiple-input multiple-output)
systems, have given significant impacts to a wide range of research fields including
communications, signal processing, and information theory because of its potential
to increase the data rate without additional bandwidth [63, 124]. The gain, however,
comes at the price of hardware and signal processing complexity, power consump-
tion etc. [94]. One of the main causes for the complexity-increase is the cost of
multiple RF (radio frequency) chains. Antenna selection has been considered as an
attractive approach to reduce the hardware complexity without severely losing the
advantages of MIMO systems (see [96, 110, 68, 55] and references therein). In par-
ticular, it has been shown that the antenna selection retains the diversity degree com-
pared to the full-complexity system [96, 73]. The complexity reduction is achieved
by equipping fewer RF chains than the antenna elements at the receiver/transmitter,
and the same number of antennas as the RF chains are selected so that the achieved
channel capacity is maximized.
Differently from the prior works, we consider power-limited systems in which

it is desired to consume the minimum amount of power with the designated chan-
nel capacity achieved. At the receiver, for instance, each antenna element requires
a ‘power-consuming’ RF chain that comprises a low noise amplifier, a frequency
down-converter (a mixer), and an analog-to-digital converter. Also the signal pro-
cessing complexity may seriously increase with the number of antenna elements.5

Therefore, it would be a natural requirement to select the minimal antenna subset
that achieves the designated channel capacity; the cardinality of such a subset de-
pends highly on the channel state, signal to noise ratio (SNR) etc. Unfortunately, the

5 When the multiple antennas are exploited for spatial multiplexing or the space-time trellis codes
are adopted, the complexity increases sometimes exponentially [94].
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problem of minimal antenna-subset selection is regarded as �0-norm 6 minimization
under highly nonlinear constraint, hence it is hard to solve the problem directly be-
cause of its combinatorial nature when the number of antennas increases.
In this section, we present an alternative algorithmic solution for reaching an

approximate solution by relaxing twice the �0-norm cost function in the original
problem. The first relaxation is the standard �1-relaxation of �0-norm found widely
in the recent approximation techniques for sparse optimization problems. Indeed,
although the first relaxed problem can be handled as a convex optimization, it is still
hard to solve directly due to the nonsmoothness of the new �1-norm cost function
coupled with the highly nonlinear capacity-constraint. Therefore, the second relax-
ation is the Moreau envelope of �1-norm, which is a computationally manageable
cost function under the capacity constraint.
The proposed algorithm is based on an application of Theorem 17.22-III (a ver-

sion of the hybrid steepest descent method (HSDM) for the subgradient projection
operator [135]) to the doubly relaxed problem: minimize the Moreau envelope of
the �1-norm subject to the capacity constraint.

17.4.2 System Model and Problem Statement

For a MIMO system with NT transmit antennas and NR receive antennas, the re-
ceived signal can be represented as

ri :=
√
EsGsi+ ni ∈ CNR . (17.37)

Here, ri represents the ith sample of the signals measured at the NR receive antennas,
si ∈CNT the ith symbol transmitted from the NT transmit antennas, Es > 0 the aver-
age energy at each receive antenna, G ∈ CNR×NT the channel matrix whose (p,q)th
component represents the channel characteristics between the pth receive antenna
and the qth transmit antenna, and ni the additive white Gaussian noise with energy
N0/2 per complex dimension. We make the standard assumptions that the channel
has frequency-flat fading and G is perfectly known at the receiver.7 Also we assume
that G is totally unknown at the transmitter, therefore choosing si such that its co-
variance matrix is INT/NT [55]; we denote by Im the m×m identity matrix. In this
case, it is known that the channel capacity (mutual information) is given as follows
[63]:

cfull := log2 det

(
INT +

ρ
NT

GHG

)
bps/Hz, (17.38)

where ρ := Es/N0 is the average SNR; (·)H stands for the Hermitian transpose.

6 The cardinality of the nonzero components in x := (x1,x2, . . .,xN) ∈ RN is often denoted by
‖x‖0 ∈ N and called commonly the �0-norm of x (or the Hamming weight of x in Coding Theory)
although ‖ · ‖0 does not satisfy either the conditions for norm or quasinorm.
7 The channel could be moderately frequency-selective [110, 96].
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We focus on the receive antenna selection. Let c∈ (0,cfull) denote the designated
channel capacity to be ensured. The problem is to select the minimal antenna sub-
set that achieves the capacity c. Let x := [x1,x2, · · · ,xNR ]t ∈ {0,1}NR represent an
antenna subset in such a way that x j = 1 (x j = 0) indicates that the jth antenna is se-
lected (not selected). Then, the channel capacity with the antenna subset represented
by x is given by

c(x) := log2 det

(
INT +

ρ
NT

GHXG

)
bps/Hz, (17.39)

where X := diag(x). The minimal antenna-subset selection problem is thus formu-
lated as follows:

min
x∈{0,1}NR

‖x‖0 s.t. c(x)≥ c, (17.40)

where ‖·‖0 denotes the �0-norm that counts the number of nonzero components.
The problem in (17.40) is mathematically challenging, because it is nonlinearly-
constrained sparse optimization. In general, finding its optimal solution involves ex-
haustive search. In the following, we present an efficient algorithmic solution using
convex and differentiable relaxations of the �0 norm.

17.4.3 Convex and Differentiable Relaxations

To alleviate the difficulty in the combinatorial nature of the problem,we reformulate
(17.40) into

min
x∈[0,1]NR

ψ(x) := ‖x‖1 s.t. ϕ(x) := c− c(x)≤ 0, (17.41)

which is ‖·‖1 minimization8. Because the function c is concave on RNR
+ [55, 17], ϕ

is convex on RNR
+ ; R+ denotes the set of all nonnegative real numbers.

Unfortunately, we can still not find any computationally efficient solver for the
reformulated problem in (17.41) because (i) the function ψ is (convex but) nei-
ther smooth nor strictly-convex and (ii) the metric projection onto the constraint
set (i.e., the zero level set of ϕ) is not efficiently computable (For instance, the
generalized Haugazeau’s scheme [38] cannot be applied directly because of the
non-strict-convexity of ψ). Therefore, we reformulate (17.41), inH := RNR where
the standard inner product and its induced norm are defined, by using the Moreau-
Yosida regularization. Defining ψω : RNR → R+,x �→ ω ‖x‖1, for an arbitrary con-
stant ω > 0 (ψ = ψω|ω=1), our optimization problem to solve is given as follows:

min
x∈[0,1]NR

γψω(x) s.t. ϕ(x)≤ 0 (γ > 0). (17.42)

8 In recent years, it has been proven both theoretically and experimentally that sparse recovery is
possible in many cases by means of the �1-norm [52, 23].
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17.4.4 Proposed Antenna-Subset Selection Algorithm

The key of the previous subsection is the second relaxation which replaces the non-
smooth ψ by γψω(x) having a Lipschitz continuous derivative. Our basic strategy
is the following: (i) compute the solution x� to the problem in (17.42) by HSDM
(Theorem 17.22-III) and (ii) choose the antenna subset associated with the indices
of (the minimum number of) the largest components of x� such that the designated
capacity c is achieved. LettingI := {1,2, · · · ,NR}, the proposed algorithm is given
as below.

Algorithm 17.25.

(i) For an initial vector x0 ∈ RNR , generate (xk)
Q
k=1 recursively by HSDM (Q: the

prespecified number of iterations), and let xQ =: [x(1)Q ,x(2)Q , · · · ,x(NR)Q ]t .
(ii) Compute the arithmetic mean x̄Q of xQ.
(iii) Choose the indices corresponding to the components no smaller than x̄Q as a

temporary antenna subset.
LetJ := /0.
for j ∈ I

if x( j)Q ≥ x̄Q
J := J ∪{ j}

end
end

(iv) Choose the minimal antenna subset.
Let xJ ∈ {0,1}NR be the vector representing the antenna
subsetJ (see Section 17.4.2).
if c(xJ )< c
while c(xJ )< c

j ∈ argmaxι∈I \J x(ι)Q
J := J ∪{ j}

end
else

Ĵ := J

while c(x
Ĵ
)≥ c

J := Ĵ

j ∈ argminι∈Ĵ
x(ι)Q

Ĵ := Ĵ \ { j}
end

end
(v) OutputJ as the selected antenna subset. �

The following subsection is devoted to explain precisely how to solve the prob-
lem in (17.42) by HSDM.
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17.4.5 Optimization by Hybrid Steepest Descent Method

The problem in (17.42) has two constraints: the capacity constraint

x ∈ lev≤0(ϕ) :=
{
x ∈ RNR : ϕ(x)≤ 0}

and the box constraint

x ∈ K := [0,1]NR =
{
x ∈RNR : 0≤ x j ≤ 1, ∀ j ∈ I

}
,

where K ∩ lev≤0(ϕ) �= /0 is confirmed by ϕ(1NR) = c− cfull < 0 for 1NR :=
[1,1, · · · ,1] ∈ K .
Note that PK can be computed easily while the computation of Plev≤0(ϕ) is not

a simple task at all. Fortunately, an application of Theorem 17.22-III to Θ := γψω ,
f := ϕ and K := K guarantees for any x0 ∈RNR that the recursion

xk+1 := (I−λk+1∇
γψω )

(
T̂α(xk)

)
, k≥ 0, (17.43)

with
T̂α := PK

[
(1−α)I+αTsp(ϕ)

]
, α ∈ (0,2), (17.44)

generates a sequence of points converging to a solution to (17.42).

Since ϕ is differentiable on RNR
+ , its gradient∇ϕ(x) :=

[
∂ϕ(x)
∂x1

, ∂ϕ(x)∂x2
, · · · , ∂ϕ(x)∂xNR

]t
is the unique subgradient at any x ∈ RNR

+ ; i.e., ∂ϕ(x) = {∇ϕ(x)}. Letting GH =:
[g1 g2 · · ·gNR ], we have

INT +
ρ
NT

GHXG= INT +
NR∑
j=1

x j

(
ρ
NT

g jg
H
j

)
, (17.45)

which is positive definite. Therefore, ∀x ∈ RNR
+ , ∀ j ∈ I , we have

∂ϕ(x)
∂x j

=− 1
ln2

tr

[(
INT +

ρ
NT

GHXG

)−1 ρ
NT

g jg
H
j

]

=− ρ
NT ln2

gHj

(
INT +

ρ
NT

GHXG

)−1
gj, (17.46)

where tr [·] stands for the trace of matrix. Note that, since (INT + ρ
NT
GHXG)−1 is

positive definite, gHj

(
INT +

ρ
NT
GHXG

)−1
g j > 0, ∀ j ∈ I , thus ∂ϕ(x)

∂x j
< 0, ∀ j ∈ I ;

g j �= 0 is silently assumed without loss of generality.
Finally, ∇γψω(= 1

γ (I− proxγψω )) is computed simply by
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proxγψω :R
NR � x �→

NR∑
j=1

sgn(
〈
x,e j

〉
)max{

∣∣〈x,e j〉∣∣− γω ,0}ej, (17.47)

where e j, j = 1,2, · · · ,NR, specially denotes the unit vector that has only one
nonzero element at the jth position.

Remark 17.26. (On the recursion (17.43)) The operator I− λk+1∇γψω in (17.43)
can be written as I+ λk+1

γ (proxγψω − I). From (17.47), proxγψω attracts to zero such

components of T̂α(xk) that are no greater than γω . Therefore, I−λk+1∇γψω also
has a similar zero-attracting function, thereby promoting the sparsity. The parame-
ters γ and λk+1 should satisfy λk+1/γ ≤ 1 so that all the components of xk+1 are kept
nonnegative. Also γ and ω should satisfy γω < 1 for preventing the situation where
all the components are attracted to zero. We mention that a constant value for all λks
(as shown below) may be used, because the strict convergence is not necessarily re-
quired in the proposed algorithm. The computational complexity of the proposed al-
gorithm is given approximately byQN2min(2Nmax+N), whereNmin :=min{NR,NT},
Nmax := max{NR,NT}, and N := min{Nmin,Nmax/2}. Hence, the proposed algo-
rithm is efficient particularly when NT is sufficiently small compared to NR. Note
that there exists no other method available for the minimal antenna-subset selection
problem (17.40).

Remark 17.27. (Equivalent expression of the problem (17.41)) Noting the range of
x, the problem (17.41) can equivalently be formulated as follows:

min
x∈[0,1]NR

ψ̃(x) := 1tNRx s.t. ϕ(x)≤ 0. (17.48)

Unfortunately, although the gradient ∇ψ̃(x) = 1NR is surely Lipschitz continuous,
it is not possible, unlike the case of (17.42), to conclude immediately that (17.48)
can be solved by applying Theorem 17.22-III for the following reason. Indeed, the
HSDM recursion for (17.48) is given by

xk+1 := (I−λk+1∇ψ̃(x))
(
T̂α(xk)

)
= T̂α(xk)−λk+11NR , k ≥ 0. (17.49)

A simple inspection of (17.49) clarifies that λk+1 should be no smaller than the
minimum component of T̂α(xk) because the function ϕ , which is included in the
operator T̂α , is convex only on RNR

+ . Therefore, to guarantee the convergence by
Theorem 17.22-III, careful design of the step size parameter λk is required at each
iteration step.

17.4.6 Numerical Examples

Simulations are performed to show the efficacy of the proposed minimal antenna-
subset selection algorithm.We consider the Rayleigh channel where the elements of
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G are independently drawn from a complex zero-mean Gaussian distribution of the
unit variance. In all the simulations, the HSDM parameters are set to α = 1, γ = 1.2,
ω = 0.8, Q = 20, and λk = 1 (∀k = 1,2, · · · ,Q). In our experiments, the proposed
algorithm is insensitive to the choice of the parameters within γω < 1 and λk/γ ≤ 1
(see Remark 17.26). All the simulated points are calculated by averaging over 2000
independent realizations of the channel matrix G.
First, Fig. 17.6 depicts the results for NR = 16, NT = 4, and c = 10,20. Figure

17.6.a describes the average number L̄R of antennas selected by the proposed al-
gorithm. As a reference, we also plot the optimal solution to the original problem
in (17.40); the optimal is computed by computationally-exhaustive full search. It is
seen that the results of the proposed algorithm are comparable to the optimal; this
suggests the reasonability of the relaxations introduced in Section 17.4.3. Figure
17.6.b describes the ergodic capacity of the proposed algorithm. With LR denoting
the number of antennas selected by the proposed algorithm, we also plotCmax(LR),
the maximum achievable capacity with the subset of LR antennas, which is com-
puted by exhaustive search. It is seen that the performance of the proposed algo-
rithm is approximately the same asCmax(LR); this is the side effects of the proposed
algorithm. In summary, the results demonstrate that the proposed algorithm realizes
(i) the near-minimal antenna subset and (ii) the near-maximum capacity achievable
with the same number of antennas as selected by the algorithm.
Second, Fig. 17.7 illustrates the results for (a) NR = 16, NT = 16, and c= 20,40

and (b) NR = 64, NT = 16,64, and c= 60. From Fig. 17.6.a and Fig. 17.7, it is seen
that the number of antennas to be used can significantly be reduced particularly
for high SNR. Moreover, in Fig. 17.7.b, we observe no distinct difference between
NT = 16 and NT = 64 for SNR higher than 15 dB. Finally, Fig. 17.8 plots L̄R against
NR for SNR= 10 dB, NT = 4, and c = 20. The result shows that an increase of
the number of antenna elements equipped could yield reduction of the number of
antennas used.

17.5 Concluding Remarks

In this paper, we have introduced the essence of the great applicability of the convex
optimization over the fixed point set of quasi-nonexpansivemapping. First, we have
shown that the fixed point characterization gives us the powerful toolbox to address
the problem of finding an “optimal” point from the fixed point set. Second, we have
proposed the integration of the hybrid steepest descent method and the Moreau-
Yosida regularization by highlighting its distinctive properties as a smooth approxi-
mation of a nonsmooth convex function. The novel integration with the gifted tool-
box has opened a path to dealing with the challenging nonsmooth convex optimiza-
tion problems under the cumbersome constraint of the fixed point set, which are nat-
urally desired yet have been unexplored in mathematical sciences and engineerings.
We have demonstrated the effectiveness of the proposed approach in its application
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Fig. 17.6 Comparisons with the optimal selection for NR = 16, NT = 4, and c= 10,20.

to the minimal antenna-subset selection problem under a highly nonlinear capacity
constraint for efficient MIMO communication systems.
This paper has focused on the nonsmooth convex optimization problems over

the fixed point set. We remark, however, that the hybrid steepest descent method
has many other possible advanced applications. For example, by letting T :=
rproxγ f1 rproxγiC for f1 ∈ Γ0(H ) and a closed convex setC⊂ H , we have the char-
acterization:G := argmin

x∈C
f1(x) = {PC(z) | z ∈ Fix(T )} (see Example 17.6(c)). This

means that we can minimize a convex function f2 :C→R over the constraint set G
by applying the hybrid steepest descent method toΘ :H →R : x �→ f2(PC(x)) and
T provided that the derivative ofΘ is Lipschitzian.
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