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Abstract The breakthrough ideas in the modern proximal splitting methodologies allow us to express the set of
all minimizers of a superposition of multiple nonsmooth convex functions as the fixed point set of computable
nonexpansive operators. In this paper, we present practical algorithmic strategies for the hierarchical convex
optimization problems which require further strategic selection of a most desirable vector from the solution set
of the standard convex optimization. The proposed algorithms are established by applying the hybrid steep-
est descent method to special nonexpansive operators designed through the art of proximal splitting. We also
present applications of the proposed strategies to certain unexplored hierarchical enhancements of the support
vector machine and the Lasso estimator.
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1 Introduction

Convex optimization has been playing a central role in a broad range of mathematical sciences and engineering.
Many optimization tasks in such applications can be interpreted as special instances of the following simple
model:

minimize f (x)+g(Ax) subject to x ∈ X , (1)

where (X ,〈·, ·〉X ,‖·‖X ), (K ,〈·, ·〉K ,‖·‖K ) are real Hilbert spaces, f : X → (−∞,∞] and g : K → (−∞,∞]
are proper lower semicontinuous convex functions, i.e., f ∈ Γ0(X ) and g ∈ Γ0(K ), and A : X → K is a
bounded linear operator, i.e., A∈B(X ,K ). Such a unified simplification is indebted entirely to the remarkable
expressive ability of the abstract Hilbert space. For example, a seemingly much more general model:
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find x⋆ ∈ S := argmin
x∈X

[
Φ(x) := f (x)+

m

∑
i=1

gi(Aix)

]
6=∅, (2)

where (X ,〈·, ·〉X ,‖ · ‖X ) and (Ki,〈·, ·〉Ki ,‖ · ‖Ki) (i = 1,2, . . . ,m) are real Hilbert spaces, f ∈ Γ0(X ), gi ∈
Γ0(Ki) (i = 1,2, . . . ,m), and Ai ∈ B(X ,Ki) (i = 1,2, . . . ,m), can also be translated into the problem in (1) by
redefining a new Hilbert space

K := K1 ×·· ·×Km = {x = (x1, . . . ,xm) | xi ∈ Ki (i = 1, . . . ,m)} (3)

equipped with the addition (x,y) 7→ (x1 + y1, . . . ,xm + ym), the scalar multiplication (α,x) 7→ (αx1, . . . ,αxm),
and the inner product (x,y) 7→ 〈x,y〉K := ∑m

i=1〈xi,yi〉Ki , a new convex function

g :=
m⊕

i=1

gi : K → (−∞,∞] : (x1, . . . ,xm) 7→
m

∑
i=1

gi(xi), (4)

and a new bounded linear operator

A : X → K : x 7→ (A1x, . . . ,Amx). (5)

Indeed, for many years, the model (2) has been accepted widely as a standard, where all players, f ,gi ◦Ai ∈
Γ0(X ) (i = 1, . . . ,m) in (2) are designed strategically by users in order to achieve, after optimization, a valuable
vector satisfying their requirements.

The so-called proximal splitting methodology has been built, on the rich mathematical foundations of convex
analysis, monotone operator theory and fixed point theory of nonexpansive operators (see, e.g., [9, 45, 47, 139]),
in order to broaden the applicability of the proximity operators of convex functions [101], e.g., to the model
(2). It is well-known that the solution set S in (2) can be characterized completely as the zero of the set-valued
operator ∂Φ : X → 2X : x 7→ {u ∈ X | Φ(y) ≥ Φ(x)+ 〈y− x,u〉X (∀y ∈ X )}, called the subdifferential
of Φ . The maximal monotonicity of ∂Φ provides us with further equivalent fixed point characterization in
terms of a single valued operator proxΦ := (I+∂Φ)−1 : X → X : x 7→ argminy∈X Φ(y)+ 1

2‖x− y‖2
X called

the proximity operator of Φ (see Section 2.2) [Note: The identity operator is denoted by I : X → X but the
common notation I is going to be used for the identity operator on any real Hilbert space in this paper]. This
fact is simply stated as

(∀z ∈ X ) z ∈ S ⇔ 0 ∈ ∂Φ(z)⇔ z = proxΦ(z)

and some algorithms can generate, from any x0 ∈ X , a weakly convergent sequence xn ∈ X (n ∈N) to a point
in S in (2) if proxΦ is available as a computational tool (see, e.g., [98, 99, 121]). A simplest example of such
algorithms generates a sequence (xn)n∈N by

xn+1 = proxΦ(xn) (n = 0,1,2, . . .). (6)

The algorithm (6) can be interpreted as a straightforward application of Krasnosel’skiı̆-Mann Iterative Process
(see Fact 6 in Section 2.2) because proxΦ is known to be firmly nonexpansive, i.e., 2proxΦ − I : X → X
is a nonexpansive operator (see (21)). Although the above strategy in (6) is conceptually simple and elegant,
its applicability has been very limited because the computation of proxΦ(x) requires to solve a regularized
convex optimization problem minΦ(·) + 1

2‖x− ·‖2
X whose unique solution is still hard to be computed for

most scenarios of type (2) in many application areas.
On the other hand, there are many scenarios that fall in the model (2) where the proximity operators of the

all players, i.e., prox f : X → X and proxgi
: Ki → Ki (i = 1, . . . ,m), are available as computational tools

while proxΦ is not practically available (see, e.g., [42, 45]). A major goal of recent active studies (see, e.g.,
[40, 44, 47, 139, 150]) on the proximal splitting methodology has been the creation of more applicable iterative
algorithms, for (2) and its variations, than (6) by utilizing computable tools prox f and proxgi

(i = 1, . . . ,m)
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simultaneously. Such effort has culminated in many powerful algorithms which have been applied successfully
to the broader classes of optimizations including the standard model (2).

Usually, the standard model (2) is formulated in the form of a weighted average of multiple convex func-
tions and the weights are designed in accordance with the level of importance of each convex function. However
quantification of the level of importance is often challenging as well as influential to the final results of opti-
mizations (see Section 5.1 for a recent advanced strategy of such a parameter tuning for the Lasso estimator
which is a standard sparsity aware statistical estimation method). By keeping in mind (i) the remarkable flex-
ibility of the standard model (2) proven extensively in many successful applications of the modern proximal
splitting methodology, as well as (ii) the inherent difficulty in the weight design of multiple convex functions
in (2), a question arises: Is there any alternative model of (2) which can also serve as a natural optimization
strategy for multiple convex criteria ? To see the light of the tunnel regarding this primitive question, let us
start to imagine important elements for us to consider in finding residence. We may consider the house rent,
the residential environment including living space and housing equipment, the neighborhood environment, the
accessibility to public transportation systems, and the commuting time, etc. We would prioritize the elements,
e.g., firstly by narrowing down the candidates to the set S1 of all residents of which the rents and commut-
ing times are in your acceptable range. Next we may try to narrow down the candidates to the set S2(⊂ S1)
of all residents whose living spaces achieve maximum level among all in S1. Further, we may probably like
to select residents in S2 as final choices by choosing the best ones, e.g., in the sense of the neighborhood
environment or the housing equipment. This simple example suggests that we often optimize multiple cri-
teria one by one hierarchically rather than optimize the sum of different criteria at once certainly because
there exists no universal justification for adding different criteria. In fact, many mathematicians and scientists
have been challenging to pave the way for the so-called hierarchical convex optimization problems (see, e.g.,
[3, 8, 18, 32, 33, 36, 46, 55, 95, 107, 114, 133, 142, 146–149]). Landmark theories toward M -stage hierar-
chical convex optimization are found, e.g., in [3, 18] where, for given Φi ∈ Γ0(X ) (i = 0,1, . . . ,M ) satisfying
Si := argmin

x∈Si−1

Φi(x) 6=∅ (i = 0,1, . . . ,M ) with S−1 := X , their major goals are set to establish computational

strategies for iterative approximation of a point in SM . (Note: Every point in Si of the hierarchical convex opti-
mization is called a viscosity solution of Si−1 (i = 1,2, . . . ,M ). To avoid confusion with ”bilevel optimization”
in the sense of [19, 30, 138], we do not use the designation bilevel optimization for S1 in our hierarchical convex
optimization). Under the assumptions that dim(X )< ∞ and that Φi ∈Γ0(X ) (i = 1,2, . . . ,M ) are real valued,
Cabot [18] showed that the sequence (xn)n∈N defined by

xn+1 := prox(
Φ0+ε(1)n Φ1+ε(2)n Φ2+···+ε(M )

n ΦM

)(xn)

=
(

I+∂
(

Φ0 + ε(1)n Φ1 + ε(2)n Φ2 + · · ·+ ε(M )
n ΦM

))−1
(xn) (7)

satisfies (i) limn→∞ d(xn,SM ) = 0 and (ii) (∀i ∈ {0,1, . . . ,M }) limn→∞ Φi(xn) = minx∈Si−1 Φi(x) if positive

number sequences (ε(0)n := 1)n∈N and (ε(i)n )n∈N (i ∈ {1, . . . ,M }) satisfy certain technical conditions including

lim
n→∞

ε(i)n = 0, lim
n→∞

ε(i)n

ε(i−1)
n

= 0 (i = 1,2, . . . ,M ) and ∑∞
n=0 ε(M )

n = ∞ [Note: The scheme (7) is a simplified version

of the original scheme in [18] by restricting to the case λn = 1 and ηn = 0 (n ∈ N)].
Clearly, the algorithms (7) and (6) have essentially a common limitation in their practical applicabilities

because (7) requires prox(
Φ0+ε(1)n Φ1+ε(2)n Φ2+···+ε(M )

n ΦM

), or its very good approximation, for every update in

generation of (xn)n∈N. By recalling the breakthrough ideas developed in the recent proximal splitting methodol-
ogy for resolution of the inherent limitation in (6), an ideal as well as possibly realistic assumption to be imposed
upon each player Φi : X → (−∞,∞] (i = 0,1, . . . ,M ) in the above M -stage hierarchical convex optimization
seems to be certain differentiability assumptions or proximal decomposability assumptions, e.g.
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Φi(x) := fi(x)+
Mi

∑
ι(i)=1

gι(i)(Aι(i)x),

with real Hilbert spaces (Kι(i) ,〈·, ·〉Kι(i)
,‖·‖Kι(i)

) (ι(i)= 1,2, . . . ,Mi), fi ∈Γ0(X ), gι(i) ∈Γ0(Ki) (i= 0,1, . . . ,M ),
and bounded linear operators Aι(i) : X → Kι(i) (ι(i) = 1,2, . . . ,Mi), where prox fi : X → X and proxgι(i)

:

Kι(i) → Kι(i) (ι(i) = 1, . . . ,Mi), are available as computational tools while proxΦi
is not necessarily available.

In this paper, we choose to cast our primary target in the iterative approximation of a solution of

minimize Ψ(x⋆) subject to x⋆ ∈ argmin
x∈X

[
Φ(x) := f (x)+

m

∑
i=1

gi(Aix)

]
6=∅, (8)

i.e., a viscosity solution of the convex optimization problem (2), where we assume that Ψ ∈ Γ0(X ) is Gâteaux
differentiable with Lipschitzian gradient ∇Ψ : X → X , i.e.,

(∃κ > 0, ∀x,y ∈ X ) ‖∇Ψ(x)−∇Ψ(y)‖ ≤ κ‖x− y‖,

and that prox f : X → X and proxgi
: Ki → Ki (i = 1, . . . ,m) are available as computational tools.

Although the application of such iterative algorithms is certainly restrictive compared to the overwhelming
potential of the general hierarchical convex optimization, our target is realistic and still allows us to cover many
applications of interest to practitioners who are searching for a step ahead optimization strategy and yet to
be able to exploit maximally the central ideas in the modern proximal splitting methodologies. Especially for
practitioners, we remark that if the suppression of ∑L

k=1 ψk ◦Bk ∈ Γ0(X ) over argminx∈X Φ(x) is required,
where, for each k ∈ {1,2, . . . ,L}, Yk is a real Hilbert space, ψk ∈Γ0(Yk), proxγψk

: Yk →Yk (γ > 0) is available
as computational tools, and Bk ∈ B(X ,Yk), such a mission could be achieved satisfactorily by considering an
alternative problem below of type (8):

minimize Ψ(x⋆) :=
L

∑
k=1

γ ψk(Bkx⋆)

subject to x⋆ ∈ argmin
x∈X

[
Φ(x) := f (x)+

m

∑
i=1

gi(Aix)

]
6=∅, (9)

where (i) γ ψk : Yk → R : yk 7→ miny∈Yk ψk(y)+ 1
2γ ‖y− yk‖2

Yk
(k = 1,2, . . . ,L) are the Moreau envelopes (or the

Moreau-Yosida regularizations) of a sufficiently small index γ > 0 (see Fact 8 in Section 2.2 and [149]). This
is because limγ↓0

γ ψk(yk) = ψk(yk) (∀yk ∈ domψk := {y ∈ Yk | ψk(y) < ∞}) and γ ψk is Gâteaux differentiable

with 1
γ -Lipschitzian ∇γ ψk : Yk → Yk : yk 7→

yk−proxγψk (yk)

γ and therefore

(∀x1,x2 ∈ X )

∥∥∥∥∥∇
L

∑
k=1

(γ ψk ◦Bk)(x1)−∇
L

∑
k=1

(γ ψk ◦Bk)(x2)

∥∥∥∥∥
X

=

∥∥∥∥∥ L

∑
k=1

B∗
k∇γ ψk (Bkx1)−

L

∑
k=1

B∗
k∇γ ψk (Bkx2)

∥∥∥∥∥
X

≤
L

∑
k=1

‖Bk‖2
op

γ
‖x1 − x2‖X ,

where B∗
k ∈ B(Yk,X ) is the conjugate of Bk ∈ Bk(X ,Yk) and ‖ · ‖op stands for the operator norm.

Fortunately, by introducing the exactly same translation used in the reformulation of Problem (2) as an
instance of Problem (1), our problem (8) can also be simplified as

minimize Ψ(x⋆) subject to x⋆ ∈ Sp := argmin
x∈X

[ f (x)+g(Ax)] 6=∅, (10)
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where K , g : K → (−∞,∞], and A : X → K are defined respectively1 by (3), (4), and (5), and we can
assume that (i) Ψ ∈ Γ0(X ) is Gâteaux differentiable with Lipschitzian gradient ∇Ψ : X → X , and that (ii)
prox f : X → X and proxg : K → K are available as computational tools because

proxg(x) := argmin
y∈K

[
g(y)+

1
2
‖y−x‖2

K

]
= argmin

(y1,...,ym)∈K1×···×Km

m

∑
i=1

[
gi(yi)+

1
2
‖yi − xi‖2

Ki

]
=
(
proxg1

(x1), . . . ,proxgm
(xm)

)
. (11)

The following two scenarios suggest the remarkable advantage achieved by algorithmic solutions to (8).

Scenario 1 (Unification of Conditional Optimization Models) Let f〈D〉 ∈ Γ0(X ) and gi〈D〉 ∈ Γ0(Ki) (i =
1,2, . . . ,m) be nonnegative valued functions which are defined with observed data D . Suppose that there exists
a well-established data analytic strategy which utilizes with Ψ ∈ Γ0(X ) as

find x⋆ ∈ argmin
x∈S0

Ψ(x),

where S0 :=
{

x ∈ X | f〈D〉(x) = gi〈D〉(Aix) = 0 (i = 1,2, . . . ,m)
}
, (12)

provided that the data D is consistent, i.e., it satisfies S0 6=∅.
However, to deal with more general data D , it is important to establish a mathematically sound extension

of the above data analytic strategy to be applicable even to inconsistent data D s.t. S0 = ∅. One of the most
natural extensions of (12) would be the following hierarchical formulation:

find x⋆⋆ ∈ argmin
x⋆∈S〈D〉

Ψ(x⋆),

where S〈D〉 := argmin
x∈X

[
f〈D〉(x)+

m

∑
i=1

gi〈D〉(Aix)

]
,

because S〈D〉 6= ∅ holds under weaker assumption than S0 6= ∅, and S〈D〉 = S0 holds true if S0 6= ∅.
However, the well-established data analytic strategies only for consistent data D in the form of (12) have often
been modified, with the so-called tuning parameter C> 0, to

find x̃⋆ ∈ argmin
x∈X

[
1
C

Ψ(x)+ f〈D〉(x)+
m

∑
i=1

gi〈D〉(Aix)

]
, (13)

which is not really an extension of (12) because the model (13) unfortunately has no guarantee to produce x⋆ in
(12) even if D satisfies S0 6=∅.

Scenario 2 Suppose that we are interested in an estimation problem of a desired vector in X at which the
functions f ,gi ◦Ai ∈ Γ0(X ) (i = 1, . . . ,m) in (2) are known to achieve small values and therefore the model
(2) has been employed as an estimation strategy. Suppose also that we newly found another effective criterion
Ψ ∈ Γ0(X ) which likely to achieve small values around the desired vector to be estimated. In such a case,
our common utilization of Ψ , for improvement of the previous strategy, has often been modeled as a new
optimization problem:

find x̃⋆ ∈ S̃ := argmin
x∈X

[
f (x)+

m

∑
i=1

gi(Aix)+Ψ(x)

]
6=∅. (14)

1 There are many practical conditions for ( f ,g,A) to guarantee Sp 6=∅, see, e.g., [9, 153] and Fact 2 in Section 2.1.
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However, it is essentially hard to tell which is better between the estimation strategies (2) and (14) because
the criteria in these optimizations are different. Indeed, x̃⋆ does not necessarily achieve best in the sense of the
model (2) while x⋆ certainly achieves best in the sense of the model (2). On the other hand, if we formulate a
new optimization problem, from a hierarchical optimization point of view, e.g., as

find x⋆⋆ ∈ argmin
x⋆∈S

Ψ(x⋆), where S := argmin
x∈X

[
f (x)+

m

∑
i=1

gi(Aix)

]
6=∅, (15)

its solution x⋆⋆ certainly meets more faithfully all the requirements than x⋆ ∈ S because both x⋆⋆,x⋆ ∈ S and
Ψ(x⋆⋆)≤Ψ(x⋆) are achieved.

The following examples suggest that the hierarchical optimization has been offering well-grounded direction
for advancement of computational strategies in inverse problems and data sciences.



1 Hierarchical Convex Optimization by the Hybrid Steepest Descent Method 7

Example 1 (Hierarchical Convex Optimizations in Real World Applications2)

(a) (Generalized inverse / Moore-Penrose inverse [9, 12, 100, 111, 118]) Let X and K be real Hilbert spaces,
let A ∈ B(X ,K ) be such that ran(A) := {A(x) ∈ K | x ∈ X } is closed. Then for every y ∈ K , Cy :=
{x ∈ X | ‖Ax− y‖K = minz∈X ‖Az− y‖K } = {x ∈ X | A∗A(x) = A∗(y)} 6= ∅. The generalized inverse
(in the sense of Moore-Penrose) A† ∈ B(K ,X ) is defined as A† : K → X : y 7→ PCy(0),where PCy is
the orthogonal projection onto Cy. A†(y) can be seen as the unique solution to the hierarchical convex
optimization problem (15) for f (z) := ‖A(z)− y‖K , gi(z) := 0 (i = 1,2, . . . ,m) and Ψ(z) = 1

2‖z‖2
X . The

Moore-Penrose inverse A† ∈ B(K ,X ) of A ∈ B(X ,K ) has been serving as one of the most natural
generalizations of the inverse of A, typically in Scenario 1, under the situations where the existence of A−1 ∈
B(K ,X ) is not guaranteed. In particular, for finite dimensional settings, there are many ways to express
A†. These include the singular value decomposition of A† in terms of the singular value decomposition of A.

(b) (Tikhonov approximation [3, 9, 55, 133]) Let Ψ , f ∈ Γ0(X ) and argmin( f )∩ dom(Ψ) 6= ∅ where Ψ is
coercive and strictly convex. Then Ψ admits a unique minimizer x0 over argmin( f ). This x0 can be seen as
the solution of the hierarchical convex optimization in (15) for gi(z) := 0 (i = 1,2, . . . ,m). Moreover, if we
define xε ∈ X as the unique minimizer of the regularized problem

miminize f (x)+ εΨ(x) subject to x ∈ X (16)

for every ε > 0, the desired x0 can be approximated as (i) xε ⇀ x0 (as ε ↓ 0) and (ii) Ψ(xε) →Ψ(x0) (as
ε ↓ 0). This fact suggests a strategy for approximating x0 if we have a practical way of computing xεn for
positive sequence (εn)

∞
n=1 satisfying εn ↓ 0 (as n → ∞). Many computational approaches to the hierarchical

convex optimization seem to have been designed along this strategy.3 We remark that many formulations of
type (13) in Scenario 1 can be seen as instances of (16) with ε = 1

C . However, in general, the hierarchical
optimality can never be guaranteed by the solution of (16) for a fixed constant ε > 0.

(c) Assuming differentiability, the iteration of (7) for M = 1 can also be interpreted as an implicit discretization
of the continuous dynamical system:

ẋ(t)+∇Φ0 (x(t))+ ε(t)∇Φ1 (x(t)) = 0, t ≥ 0, (17)

where ε : R+ → R is a control parameter tending to 0 when t → ∞. This observation has been motivating
explicit discretization of (17) for iterative approximation of point in S1, e.g. by

xn+1 ∈ xn +λn∂ (Φ0 + εnΦ0)(xn),

and its variations (see, e.g., [78, 79, 127, 128]), where λn is a nonnegative stepsize. However this class of
algorithms cannot exploit recent advanced proximal splitting techniques for dealing with the constrained set
S0.

(d) Under the assumption that (i) Ψ is Gâteaux differentiable with Lipschitzian gradient ∇Ψ : X →X , and (ii)
prox f : X → X is available as a computable tool, the inertial forward-backward algorithm with vanishing
Tikhonov regularization was proposed [4], along in the frame of accelerated forward-backward methods4,

2 To the best of the authors’ knowledge, little has been reported on the hierarchical nonconvex optimization. We remark that
the MV-PURE (Minimum-variance pseudo-unbiased reduced-rank estimator) (see, e.g., [112, 113, 144]), for the unknown vector
possibly subjected to linear constraints, is defined by a closed form solution of a certain hierarchical nonconvex optimization
problem which characterizes a natural reduced rank extension of the Gauss-Markov (BLUE) estimator [85, 93] to the case of
reduced-rank estimator. It was shown in [113] that specializations of the MV-PURE include Marquardt’s reduced rank estimator
[97], Chipman-Rao estimator [29], and Chipman’s reduced rank estimator [28]. In Section 5.2 of this paper, we newly present
a special instance of a hierarchical nonconvex optimization problem which can be solved through multiple hierarchical convex
optimization subproblems.
3 The behavior of (xε )ε∈(0,1) ⊂ X can be analyzed in the context of approximating curve for monotone inclusion problem. For
recent results combined with Yosida regularization, see [37].
4 See [4] on the stream of research, to name but a few, [11, 24], originated from Nesterov’s seminal paper [103].
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for an iterative approximation of the solution of a hierarchical convex optimization in (15) for gi = 0 (i =
1,2, . . . ,m).

(e) In general, the convex optimization problems, especially in the convex feasibility problems [7, 22, 31], have
infinitely many solutions that could be considerably different in terms of other criteria. However most it-
erative algorithms for convex optimization can approximate an anonymous solution of the problem. For
pursuing a better solution in some other aspects, superiorization [21, 80, 104, 110] introduces proactively
designed perturbations into the original algorithms with preserving preferable convergence properties. Es-
sentially, by adopting another criterion Ψ , these methods aim to lower the value of Ψ with incorporating a
perturbation involving the descent direction of Ψ . Apparently, as reported in [150], the hierarchical convex
optimization can serve as one of the ideal formulations for the superiorization.

(f) Let Ψ ∈ Γ0(X ) be Gâteaux differentiable and its gradient ∇Ψ : X → X is Lipschitzian. Suppose that
f ∈ Γ0(X ) is also Gâteaux differentiable with Lipschitzian gradient ∇ f : X → X and admits argmin( f +
ιK) 6=∅ for a nonempty closed convex set K ⊂ X , where ιK is the indicator function , i.e.,

ιK(x) :=
{

0 if x ∈ K,
∞ otherwise.

Then

minimize Ψ(x) subject to x ∈ argmin( f + ιK) (18)

can be seen as an instance of the hierarchical convex optimization in (15) for g1 := ιK and gi = 0 (i =
2,3, . . . ,m). By applying the hybrid steepest descent method [52, 141, 142, 146–148] to several expressions
of the set argmin( f + ιK) as the fixed point set of certain computable nonexpansive operators T : X → X
(see, e.g., [146, Proposition 2.5], [149, Example 17.6(b)]), practical algorithms have been established to
produce a sequence xn ∈ X (n = 0,1,2, . . .) which is guaranteed to converge to a solution to Problem (18).
These cover a version of Projected Landweber method [63, 115, 123] for Ψ(x) := 1

2‖x‖2
X and f (x) :=

‖A(x)− b‖K , where A ∈ B(X ,K ) and the metric projection PK : X → K is assumed available as a
computational tool. As will be discussed below, the main idea of the present paper specialized for Problem
(10) (or equivalently Problem (8)) is along this simple hierarchical optimization strategy [86, 107, 146, 149,
150] of applying the hybrid steepest descent method (HSDM: see Section 2.4) to the precise expressions of
the solution sets of the convex optimization problems in terms of fixed point sets of computable nonexpansive
operators defined on a certain real Hilbert space H which is not necessarily same as the original Hilbert
space X .

Apparently, to tackle Problem (10) (or equivalently Problem (8)), we need to exploit full information on Sp
which is an infinite set in general. Moreover, even by using the recently developed powerful proximal splitting
algorithms, specially designed for (1), we can produce only some vector sequence that converges to just an
anonymous point in Sp, which implies that we need to add further a new twist to the well-known strategies
applicable to Problem (1).

Fortunately, the unified perspective from the viewpoint of convex analysis and monotone operator theory
(see, e.g., [9]) often enables us to enjoy notable characterizations of the solution set Sp in terms of the set of all
fixed points of a computable nonexpansive operator defined on certain real Hilbert spaces. Indeed, almost all ex-
isting proximal splitting algorithms for Problem (1) more or less rely on the following type of characterizations
of Sp:

Sp = argmin
x∈X

f (x)+g(Ax) = Ξ (Fix(T )) :=
⋃

z∈Fix(T )

Ξ(z)⊂ X , (19)

Fix(T ) := {z ∈ H | T (z) = z} (Fixed point set of T ), (20)

where (H ,〈·, ·〉H ,‖ · ‖H ) is a certain real Hilbert space (not necessarily H = X ), T : H → H is a com-
putable nonexpansive operator, i.e., an operator satisfying
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(∀z1,z2 ∈ H ) ‖T (z1)−T (z2)‖H ≤ ‖z1 − z2‖H , (21)

and Ξ : H → 2X is a certain set valued operator. Examples of such characterizations are found in [62, 150]
for the augmented Lagrangian method [81, 116], in [44, 45] for the forward-backward splitting approach [66,
109, 134], in [40, Proposition 18(iii)] for the Douglas-Rachford splitting approach (see Section 2.3) [91], in
[61, 150] for the alternating direction method of multipliers (ADMM) [66, 76, 91], in [47, 139] for the primal-
dual splitting method, and in [150] for a generalized version (see Section 2.3) of the linearized augmented
Lagrangian method [151].

If we find a computable nonexpansive operator T satisfying (19) as well as a computationally tractable way
to extract a point in Ξ(z)(⊂ X ) for a given z ∈ Fix(T ), we can realize an algorithmic solution to Problem
(1) by applying the so-called Krasnosel’skiı̆-Mann Iterative Process (see Fact 6 in Section 2.2) to T , and can
produce a weak convergent sequence to a fixed point z ∈ Fix(T ), followed by a point extraction from Ξ(z).
Indeed, the powerful proximal splitting methodologies for Problem (2) seem to have been built more or less
along this strategy through innovative designs of computable nonexpansive operators by using prox f : X →X
and proxgi

: Ki → Ki (i = 1, . . . ,m) as computational tools.
On the other hand, every nonexpansive operator T : H → H can also be plugged into the hybrid steepest

descent method for minimizing Θ ∈ Γ0(H ), whose gradient ∇Θ : H → H is Lipschitz continuous, over the
fixed point set Fix(T ) 6= ∅ (see Section2.4). 5 Moreover, for Problem (1), if such a computable nonexpansive
operator T can be used to express Sp as in (19) but more nicely with some computable bounded linear operator
Ξ ∈ B(H ,X ), we can apply the hybrid steepest descent method to Problem (10) after translating it into

find z⋆ ∈ argmin
z∈Fix(T )

Θ(z), (22)

where Θ :=Ψ ◦Ξ , because Θ ∈Γ0(H ) is certainly Gâteaux differentiable with Lipschitzian gradient ∇Θ : z 7→
Ξ ∗∇Ψ (Ξz) and Ξ(z⋆) ∈ X is a solution of (10).

The goal of this paper is to demonstrate that plugging the modern proximal splitting operators into the hybrid
steepest descent method is a powerful computational strategy for solving highly valuable hierarchical convex
optimization problems (8) in Scenario 1 and Scenario 2. The remainder of the paper is organized as follows. In
the next section, as preliminaries, we introduce elements of convex analysis and fixed point theoretic view of
the modern proximal splitting algorithms. These include key ideas behind fixed point characterizations of Sp
in Problem (10) as well as the hybrid steepest descent method for nonexpansive operators. Section 3 contains
the main idea of the hierarchical convex optimization based on the hybrid steepest descent method applied to
modern proximal splitting operators. In Section 4, as a typical example of Scenario 1, we present an application
of the proposed strategies to a hierarchical enhancement of the support vector machine [48, 135, 136] where
we demonstrate how we can compute the best linear classifier which achieves the maximal margin among all
linear classifiers having least empirical hinge loss. The proposed best linear classifier can be applied to general
training data whether it is linearly separable or not. In particular, for linearly separable data, the proposed
best linear classifier, which does not require any parameter tuning, is guaranteed to reproduce successfully
the original support vector machine specially defined in [136]. To the best of the authors’ knowledge, such a
unified generalization of original support vector machine for linearly separable data has not been achieved by
previously reported SVMs (see, e.g., [14, 25, 48, 73, 125, 126, 131] and Section 4.2). In Section 5, as a typical
example along Scenario 2, we present an application of the proposed strategy to a hierarchical enhancement of
Lasso [73, 132]. This enhancement is achieved by utilizing maximally the Douglas-Rachford splitting applied
to a recently established proximity operator [35, 38] of a perspective function for the TREX problem [89] which
is certainly the state-of-the-art nonconvex formulation for automatic sparsity control of Lasso. The proposed

5 By extending the idea in [75], another algorithm, which we refer to as the generalized Haugazeau’s algorithm, was developed for
minimizing a strictly convex function in Γ0(H ) over the fixed point set of a certain quasi-nonexpansive operator [33]. In particular,
this algorithm was specialized in a clear way for finding the nearest fixed point of a certain quasi-nonexpansive operator [8] and
applied successfully to an image recovery problem [39]. If we focus on the case of a nonstrictly convex function, the generalized
Haugazeau’s algorithm is not applicable, while some convergence theorems of the hybrid steepest descent method suggest its sound
applicability provided that the gradient of the function is Lipschitzian.
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application can optimize further an additional convex criterion over the all solutions of the TREX problem.
Finally, in Section 6, we conclude this paper with some remarks on other possible advanced applications of the
hybrid steepest descent method.

2 Preliminary

Let X be a real Hilbert space equipped with6 an inner product 〈·, ·〉 and its induced norm ‖ ·‖=
√
〈·, ·〉, which

is denoted by (X ,〈·, ·〉,‖ · ‖). Let (K ,〈·, ·〉K ,‖ · ‖K ) be another real Hilbert space. Let A : X → K be a
bounded linear operator of which the norm is defined by ‖A‖op := supx∈X : ‖x‖≤1 ‖Ax‖K . For a bounded linear
operator A : X → K , A∗ : K → X denotes its adjoint or conjugate, i.e.,

(∀(x,u) ∈ X ×K ) 〈x,A∗u〉= 〈Ax,u〉K .

2.1 Selected Elements of Convex Analysis and Optimization

For readers’ convenience, we list minimum elements, in convex analysis, which will be used in the later sections
(for their detailed accounts, see, e.g., [7, 9, 35, 38, 44, 64, 82, 122, 143, 152]).
(Convex Set) A set C ⊂ X is said to be convex if λx+(1−λ )y ∈C for all λ ∈ (0,1) and for all x,y ∈C.
(Proper Lower Semicontinuous Convex Function; See, e.g., [9, Chapter 9] A function f : X → (−∞,∞]
is said to be proper if its effective domain dom( f ) := {x ∈ X | f (x) < ∞} is nonempty. A function f : X →
(−∞,∞] is said to be lower semicontinuous if its lower level set lev≤α f := {x ∈X | f (x)≤ α}(⊂X ) is closed
for every α ∈R. A function f : X → (−∞,∞] is said to be convex if f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y)
for all λ ∈ (0,1) and for all x,y ∈ dom( f ). In particular, f is said to be strictly convex if f (λx+(1−λ )y) <
λ f (x)+ (1−λ ) f (y) for all λ ∈ (0,1) and for all x,y ∈ dom( f ) such that x 6= y. The set of all proper lower-
semicontinuous convex functions defined over the real Hilbert space X is denoted by Γ0(X ).
(Coercivity and Supercoercivity; See, e.g., [9, Chapter 11]) A function f : X → (−∞,∞] is said to be coer-
cive if

‖x‖→ ∞ ⇒ f (x)→ ∞

and supercoercive if

‖x‖→ ∞ ⇒ f (x)
‖x‖

→ ∞.

Obviously, supercoercivity of f implies coercivity of f . Coercivity of f ∈ Γ0(X ) implies that lev≤α f = {x ∈
X | f (x) ≤ α} is bounded for every α ∈ R as well as argminx∈X f (x) 6= ∅. Strict convexity of f ∈ Γ0(X )
implies that the set of minimizers is at most singleton.

Fact 2 (See, e.g., [9, Section 11.4]) Let f ∈ Γ0(X ), g ∈ Γ0(K ) and A ∈ B(X ,K ) such that dom( f )∩
dom(g◦A) 6=∅. Then the following conditions

(a) argmin( f +g◦A)(X ) is nonempty, closed, and bounded;

(b) f +g◦A is coercive;

(c) f is coercive, and g is bounded below;

(d) f is super-coercive;

6 Often 〈·, ·〉X denotes 〈·, ·〉 to explicitly describe its domain.
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satisfy that ((d) or (c))⇒ (b)⇒ (a).

(Gâteaux Differential; See, e.g., [9, Section 2.6]) Let U be an open subset of X . Then a function f : U → R
is said to be Gâteaux differentiable at x ∈U if there exists a(x) ∈ X such that

lim
δ→0

f (x+δh)− f (x)
δ

= 〈a(x),h〉 (∀h ∈ X ).

In this case, ∇ f (x) := a(x) is called Gâteaux gradient (or gradient) of f at x. Let f ∈ Γ0(X ) be Gâteaux
differentiable at x⋆ ∈ X . Then x⋆ is a minimizer of f if and only if ∇ f (x⋆) = 0.
(Subdifferential; See, e.g., [9, Chapter 16]) For a function f ∈ Γ0(X ), the subdifferential of f is defined as
the set valued operator

∂ f : X → 2X : x 7→ {u ∈ X | 〈y− x,u〉+ f (x)≤ f (y),∀y ∈ X }.

Every element u ∈ ∂ f (x) is called a subgradient of f at x. For a given function f ∈ Γ0(X ), x⋆ ∈ X is a
minimizer of f if and only if 0 ∈ ∂ f (x⋆). Note that if f ∈ Γ0(X ) is Gâteaux differentiable at x ∈ X , then
∂ f (x) := {∇ f (x)}.
(Conjugate Function; See, e.g., [9, Chapter 13 and Chapter 16]) For a function f ∈ Γ0(X ), the conjugate
of f is defined by

f ∗ : X → [−∞,∞] : u 7→ sup
x∈X

(〈x,u〉− f (x)) = sup
x∈dom( f )

(〈x,u〉− f (x)).

Let f ∈ Γ0(X ). Then f ∗ ∈ Γ0(X ) and f ∗∗ = f are guaranteed. Moreover, we have

(∀(x,u) ∈ X ×X ) u ∈ ∂ f (x)⇔ f (x)+ f ∗(u) = 〈x,u〉 ⇔ x ∈ ∂ f ∗(u),

which implies that (∂ f )−1(u) := {x ∈ X | u ∈ ∂ f (x)}= ∂ f ∗(u) and (∂ f ∗)−1(x) := {u ∈ X | x ∈ ∂ f ∗(u)}=
∂ f (x). Often

(∀x ∈ dom(∂ f ))(∀u ∈ ∂ f (x)) f (x)+ f ∗(u) = 〈x,u〉 (23)

is referred to as Fenchel-Young identity.
For hierarchical enhancement of Lasso in Section 5, we exploit the following nontrivial example.

Example 3 (Subdifferential of Perspective; See [38, Lemma 2.3])
For given supercoercive φ ∈ Γ0(RN), the function

φ̃ : R×RN → (−∞,∞] : (η ,y) 7→


ηφ(y/η), if η > 0;

sup
x∈dom(φ)

[φ(x+y)−φ(x)], if η = 0;

+∞, otherwise.

(24)

satisfies φ̃ ∈ Γ0
(
R×RN

)
and is called the perspective of φ .

The subdifferential of φ̃ is given by

∂ φ̃(η ,y) =


{
(φ(y/η)−〈y/η ,u〉,u) ∈ R×RN | u ∈ ∂φ(y/η)

}
, if η > 0;

{(µ,u) ∈ R×RN | µ +φ∗(u)≤ 0}, if η = 0 and y = 0;
∅, otherwise.

(25)

(Conical Hull, Span, Convex Sets; See, e.g., [9, Chapter 6]) For a given nonempty set C ⊂ X , cone(C) :=
{λx | λ > 0,x∈C} is called the conical hull of C, and span(C) denotes the intersection of all the linear subspaces
of X containing C. The closure of span(C) is denoted by span(C). The strong relative interior of a convex set
C ⊂ X is defined by
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sri(C) := {x ∈C | cone(C− x) = span(C− x)},

where C− x := {y− x ∈ X | y ∈C}.
Similarly, the relative interior of a convex set C ⊂ X is defined by

ri(C) := {x ∈C | cone(C− x) = span(C− x)}.

By cone(C−x)⊂ span(C−x)⊂ span(C−x) for every x ∈C, we have sri(C)⊂ ri(C). Moreover, sri(C) = ri(C)
if span(C− x) = span(C− x) for every x ∈C, which implies

dim(X )< ∞ ⇒ sri(C) = ri(C). (26)

(Indicator Function) For a nonempty closed convex set C ⊂ X , the indicator function of C is defined by

ιC : X → (−∞,∞] : x 7→
{

0, if x ∈C;
+∞, otherwise,

which belongs to Γ0(X ). In particular, for a closed subspace V ⊂ X ,

u ∈ ∂ιV (x) ⇔ x ∈V and u ∈V⊥ := {y ∈ X | (∀v ∈V ) 〈v,y〉= 0}. (27)

Furthermore, the indicator function ι{0} ∈ Γ0(X ) of {0} ⊂ X has the following properties: for all x,u ∈ X

∂ι{0}(x) =
{

X , if x = 0;
∅, otherwise, (28)

ι∗{0}(u) = sup
y∈X

(〈y,u〉− ι{0}(y)) = 0, (29)

∂ι∗{0}(u) = {0}.

(Fenchel-Rockafellar Duality for Convex Optimization Problem Involving Linear Operator; See, e.g., [9,
Definition 15.19]) Let f ∈ Γ0(X ), g ∈ Γ0(K ), and A ∈ B(X ,K ). The primal problem associated with the
composite function f +g◦A is

minimizex∈X f (x)+g(Ax), (30)

its dual problem is

minimizeu∈K f ∗(A∗u)+g∗(−u), (31)

µ := infx∈X ( f (x)+g(Ax)) is called the primal optimal value, and µ∗ := infu∈K ( f ∗(A∗u)+g∗(−u)) the dual
optimal value.

Fact 4 (See, e.g., [9, Theorem 15.23, Theorem 16.47, Corollary 16.53]) The condition

0 ∈ sri(dom(g)−Adom( f ))
(sri can be replaced by ri in the case of dim(K )< ∞, see (26))

}
(32)

is the so-called qualification condition for problem (30).

(a) The condition (32) guarantees that the dual problem (31) has a minimizer and satisfies

µ = inf
x∈X

( f (x)+g(Ax)) =− min
u∈K

( f ∗(A∗u)+g∗(−u)) =−µ∗;

(b) The condition (32) guarantees that the subdifferential of f +g◦A can be decomposed as
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∂ ( f +g◦A) = ∂ f +A∗ ◦ (∂g)◦A;

(c) The qualification condition (32) with f ≡ 0 becomes 0 ∈ sri(dom(g)− ran(A)), where ran(A) := A(X ) :=
{Ax ∈ K | x ∈ X }. Under this condition, (a), (b), and (29) guarantee µ = infx∈X g(Ax) = infx∈X ι∗{0}(x)+g(Ax) =−minu∈K (ι{0}(A∗u)+g∗(−u))

=−minu∈N (A∗) g∗(−u) =−µ∗

∂ (g◦A) = A∗ ◦∂g◦A.

Fact 5 ([9, Theorem 19.1]) Suppose that 0 ∈ dom(g)−Adom( f ) (Note: This condition is not sufficient for
(32)). Let (x,u) ∈ X ×K . Then the following are equivalent:

(i) x is a solution of the primal problem (30), u is a solution of the dual problem (31), and µ =−µ∗.
(ii) A∗u ∈ ∂ f (x) and −u ∈ ∂g(Ax).
(iii) x ∈ ∂ f ∗(A∗u)∩A−1(∂g∗(−u)).

2.2 Selected Elements of Fixed Point Theory of Nonexpansive Operators for Application
to Hierarchical Convex Optimization

For readers’ convenience, we list minimum elements in fixed point theory of nonexpansive mapping specially
for application to hierarchical convex optimization in this paper (for their detailed accounts, see, e.g., [7, 9, 38,
42, 44, 51, 82, 122, 130, 143]).
(Monotone Operator; See, e.g., [9, Section 20.1]) A set-valued operator T : X → 2X is said to be monotone
over S(⊂ X ) if

(∀x,y ∈ S)(∀u ∈ T x)(∀v ∈ Ty) 〈u− v,x− y〉 ≥ 0.

In particular, it is said to be η-strongly monotone over S if

(∃η > 0)(∀x,y ∈ S)(∀u ∈ T x)(∀v ∈ Ty) 〈u− v,x− y〉 ≥ η‖x− y‖2.

(Nonexpansive Operator; See, e.g., [7] and [9, Chapter 4]) An operator T : X → X is said to be Lipschitz
continuous with Lipschitz constant κ > 0 (or κ-Lipschitzian) if

(∀x,y ∈ X ) ‖T x−Ty‖ ≤ κ‖x− y‖.

In particular, an operator T : X → X is said to be nonexpansive if it is 1-Lipschitzian, i.e.,

(∀x,y ∈ X ) ‖T x−Ty‖ ≤ ‖x− y‖.

A nonexpansive operator T is said to be α-averaged (or averaged with constant α) [5, 9] if there exist α ∈ (0,1)
and a nonexpansive operator T̂ : X → X such that

T = (1−α)I+αT̂ , (33)

i.e., T is an average of the identity operator I and some nonexpansive operator T̂ . If (33) holds for α = 1/2, T
is said to be firmly nonexpansive. A nonexpansive operator T is α-averaged if and only if

(∀x,y ∈ X ) ‖T x−Ty‖2 ≤ ‖x− y‖2 − 1−α
α

‖(x−T x)− (y−Ty)‖2. (34)
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Suppose that a nonexpansive operator T has the fixed point set Fix(T ) := {x ∈ X | T x = x} 6=∅. Then Fix(T )
can be expressed as the intersection of closed halfspaces:

Fix(T ) =
⋂

y∈X

{
x ∈ X | 〈y−T (y),x〉 ≤ ‖y‖2 −‖T (y)‖2

2

}

and therefore Fix(T ) is closed and convex (see, e.g., [70, Proposition 5.3], [142, Fact 2.1(a)], and [9, Corollary
4.24]). In addition, a nonexpansive operator T with Fix(T ) 6=∅ is said to be attracting [7] if

(∀x 6∈ Fix(T ))(∀z ∈ Fix(T )) ‖T x− z‖< ‖x− z‖.

The condition (34) implies that α-averaged nonexpansive operator T is attracting if Fix(T ) 6=∅. Note that other
useful properties on α-averaged nonexpansive operators are found, e.g., in [20, 45, 105].

Fact 6 (Krasnosel’skiı̆-Mann (KM) Iteration [71] (See Also [9, Section 5.2],[20, 56, 88, 96, 119])) For a
nonexpansive operator T : X → X with Fix(T ) 6= ∅ and any initial point x0 ∈ X , the sequence (xn)n∈N
generated by

xn+1 = (1−αn)xn +αnT xn

converges weakly7 to a point in Fix(T ) if (αn)n∈N ⊂ [0,1] satisfies ∑n∈N αn(1−αn) = ∞ (Note: The weak limit
of (xn)n∈N depends on the choices of x0 and (αn)n∈N).8 In particular, if T is α-averaged for some α ∈ (0,1)
(see (33)), a simple iteration

xn+1 = T xn = (1−α)xn +αT̂ xn (35)

converges weakly to a point in Fix(T ) = Fix(T̂ ).

(Proximity Operator [101, 102] (See Also [9, Chapter 24])) The proximity operator of f ∈ Γ0(X ) is defined
by

prox f : X → X : x 7→ argmin
y∈X

f (y)+
1
2
‖y− x‖2.

Note that prox f (x)∈X is well defined for all x ∈X due to the coercivity and the strict convexity of f (·)+ 1
2‖·

−x‖2 ∈ Γ0(X ). It is also well known that prox f is nothing but the resolvent of ∂ f , i.e., prox f = (I+∂ f )−1 =:
J∂ f , which implies that

x ∈ Fix(prox f ) ⇔ prox f (x) = x ⇔ (I+∂ f )−1(x) = x

⇔ x ∈ (I+∂ f )(x) ⇔ 0 ∈ ∂ f (x) ⇔ x ∈ argmin
y∈X

f (y). (36)

Thanks to this fact, the set of all minimizers of f ∈Γ0(X ) can be characterized in terms of a single-valued map,
i.e., prox f . Moreover, since the proximity operator is 1/2-averaged nonexpansive, i.e., rprox f := 2prox f − I is
nonexpansive, the iteration

7 (Strong and weak convergences) A sequence (xn)n∈N ⊂ X is said to converge strongly to a point x ∈ X if the real number
sequence (‖xn − x‖)n∈N converges to 0, and to converge weakly to x ∈ X if for every y ∈ X the real number sequence (〈xn −
x,y〉)n∈N converges to 0. If (xn)n∈N converges strongly to x, then (xn)n∈N converges weakly to x. The converse is true if X is finite
dimensional, hence in finite dimensional case we do not need to distinguish these convergences.
(Sequential cluster point) If a sequence (xn)n∈N ⊂ X possesses a subsequence that strongly (weakly) converges to a point x ∈ X ,
then x is a strong (weak) sequential cluster point of (xn)n∈N. For weak topology of real Hilbert space in the context of Hausdorff
space, see [9, Lemma 2.30].
8 Some extensions to uniformly convex Banach spaces are found in [71, 119].
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xn+1 = prox f (xn) (37)

converges weakly to a point in argminx∈X f (x) = Fix(prox f ) by (35) in Fact 6. The iterative algorithm (37) is
known as proximal point algorithm [121] (see (6)).
In this paper, f ∈ Γ0(X ) is said to be proximable if prox f is available as a computable operator. Note that if
f ∈ Γ0(X ) is proximable, so is f ∗ ∈ Γ0(X ). This is verified by

prox f ∗ = J∂ f ∗ = J(∂ f )−1 = I− J∂ f = I−prox f ,

which is a special example of the inverse resolvent identity [9, Proposition 23.20]. Note that the sum of two
proximable convex functions is not necessarily proximable. Moreover, for A ∈ B(X ,K ), the composition
g ◦A ∈ Γ0(X ) for a proximable function g ∈ Γ0(K ) is not necessarily proximable. There are many useful
formula to compute the proximity operator (see, e.g., [9, Chapter 24], [42]).

Example 7

(a) (Indicator function; see, e.g., [9, Example 12.25]) For a nonempty closed convex set C ⊂ X ,

(∀x ∈ X ) proxιC(x) = argmin
y∈X

(
ιC(y)+

1
2
‖y− x‖2

)
= argmin

y∈C

1
2
‖y− x‖2 =: PC(x)

holds, which implies that proxιC is identical to the metric projection onto C. In particular, if ιC is proximable,
C is said to be simple.

(b) (Semi-orthogonal linear transform of proximable function; see, e.g., [9, Proposition 24.14] and [42,
Table 10.1])
For g ∈ Γ0(K ) and A ∈ B(X ,K ) such that AA∗ = νI with some ν > 0,

(∀x ∈ X ) proxg◦A(x) = x+ν−1A∗(proxνg(Ax)−Ax). (38)

(c) (Hinge loss function; see, e.g., [1] and [9, Example 24.36]) For γ > 0 and

h : R→ [0,∞) : t 7→ max{0,1− t}, (39)
(∀t ∈ R) proxγh(t) = min{t + γ,max{t,1}}. (40)

(d) (ℓ1 norm; see, e.g., [9, 44]) For γ ≥ 0 and the ℓ1 norm ‖ · ‖1 ∈ Γ0(RN)

(∀x = (x1,x2, . . . ,xN) ∈ RN) ‖x‖1 :=
N

∑
j=1

|xi|,

the i-th component of the proximity operator of γ‖ · ‖1 is given as

(∀x = (x1,x2, . . . ,xN) ∈ RN) [proxγ‖·‖1
(x)]i =

{
xi − sgn(xi)γ, if |xi|> γ;
0, otherwise,

where sgn: R→ R is the signum function, i.e., sgn(x) = 0 if x = 0 and sgn(x) = x/|x| otherwise. proxγ‖·‖1
is also known as soft-thresholding [53, 54].

(e) (Proximity operator of perspective of ‖ · ‖q; see, e.g., [38]) Let β > 0 and q > 1. The perspective φ̃q of
φq(·) := ‖ · ‖q/β (see also (24) in Example 3) is given by

φ̃q : R×RN → (−∞,∞] : (η ,y) 7→


‖y‖q

βηq−1 , if η > 0;
0, if η = 0 and y = 0;
+∞, otherwise,

(41)



16 Isao Yamada and Masao Yamagishi

and its proximity operator can be expressed as

proxφ̃q
: R×RN → R×RN

: (η ,y) 7→

{(
η + ρ

q∗ ‖p‖q∗ ,y−p
)
, if q∗η +ρ‖y‖q∗ > 0;

(0,0), if q∗η +ρ‖y‖q∗ ≤ 0,

where q∗ :=
q

q−1
, ρ := (β (1−1/q∗))q∗−1 , p :=

{
τ y
‖y‖ , if y 6= 0;

0, if y = 0,

and τ ∈ (0,∞) is uniquely determined as the solution to the equation:

τ2q∗−1 +
q∗η
ρ

τq∗−1 +
q∗‖y‖

ρ2 = 0.

The the proximity operator of the translation, by (a,b) ∈ R×RN , of φ̃q

τ(a,b) φ̃q : R×RN → R×RN : (η ,y) 7→ φ̃q (η −a,y−b) ,

which can be expressed as

proxτ(a,b) φ̃q
: R×RN → R×RN : (η ,y) 7→ (a,b)+proxφ̃q

(η −a,y−b) ,

will play an important role in Section 5.

Fact 8 (Moreau Envelope (See, e.g., [9, Section 12.4], [101, 102]))
For f ∈ Γ0(X ),

γ f : X → R : x 7→ min
y∈X

(
f (y)+

1
2γ

‖x− y‖2
)

is called the Moreau envelope (or Moreau-Yosida regularization) [101, 102] of f of the index γ > 0. The
function γ f is Gâteaux differentiable convex with Lipschitzian gradient

∇γ f : X → X : x 7→ 1
γ
(I−proxγ f )(x).

The Moreau envelope of f converges pointwise to f on dom( f ) as γ ↓ 0 (see, e.g., [9, Proposition 12.33(ii)]),
i.e., limγ↓0

γ f (x) = f (x) (∀x ∈ dom( f )).

2.3 Proximal Splitting Algorithms and Their Fixed Point Characterizations

In this section, we introduce the Douglas-Rachford splitting method9 (see, e.g., [9, 10, 34, 40, 61, 91]) and the
linearized augmented Lagrangian method (see, e.g., [150, 151]) as examples of the proximal splitting algorithms
built on computable nonexpansive operators with a great deal of potential in their applications to the hierarchical

9 See [10, 42] for the history of the Douglas-Rachford splitting method, originated from Douglas-Rachford’s seminal paper [57]
for solving matrix equations of the form u = Ax+Bx, where A and B are positive-definite matrices (see also [137]). For recent
applications, of the Douglas-Rachford splitting method, to image recovery, see, e.g., [26, 40, 58, 60], and to data sciences, see, e.g.,
[38, 67, 68]. Lastly, we remark that it was shown in [61] that the alternating direction method of multipliers (ADMM) [17, 62, 66,
91, 150] can be seen as a dual variant of the Douglas-Rachford splitting method.
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convex optimization problem. As explained briefly just after (19–21), these proximal splitting algorithms are
essentially realized by applying Fact 6 (see Section 2.2) to certain computable nonexpansive operators.

Proposition 9 (DRS Operator and Douglas-Rachford Splitting Method10)
Let (X ,〈·, ·〉X ,‖ · ‖X ) be a real Hilbert space and f ,g ∈ Γ0(X ). Suppose that

argmin( f +g)(X ) 6=∅, (42)
argmin( f ∗+g∗ ◦ (−I))(X ) 6=∅, (43)
min( f +g)(X ) =−min( f ∗+g∗ ◦ (−I))(X ). (44)

Then the DRS operator

TDRS := (2prox f −I)◦ (2proxg−I) (45)

satisfies:

(a) proxg(Fix(TDRS)) = argmin( f +g)(X );
(b) TDRS is nonexpansive;
(c) By using (αn)n∈N ⊂ [0,1] satisfying ∑n∈N αn(1−αn) =∞ in Fact 6 (see Section 2.2), the sequence (yn)n∈N ⊂

X generated by

yn+1 = (1−αn)yn +αnTDRS(yn) (46)

converges weakly to a point in Fix(TDRS). Moreover, (proxg(yn))n∈N converges weakly to a point in
argmin( f +g)(X ).

The iterative algorithm to produce (proxg(yn))n∈N with (46) can be seen as a simplest example of the so-called
Douglas-Rachford splitting method.

The proof of Proposition 9(a) is given in Appendix A because the conditions (42–44) are newly imposed
for applications of TDRS (in (45)) to hierarchical convex optimizations in Theorem 15 and in Theorem 17 (see
Remark 16(b) and Remark 18(b) in Section 3.1) and different from [40, Condition (6)] which is also in the
context of convex optimization. Proposition 9(b) is obvious from the properties of the proximity operator just
after (36). For weak convergence of (proxg(yn))n∈N in Proposition 9(c), see, e.g., [9, Corollary 28.3(iii)] while
the weak convergence of (yn)n∈N is obvious from Fact 6.

The linearized augmented Lagrangian method (LALM) seems to have been proposed originally as an algo-
rithmic solution to the minimization of the nuclear norm of a matrix subject to a linear constraint [151]. Inspired
by the operator defined as the iterative update [151, (3.7)] in the method for this special convex optimization
problem, we extended in [150] the operator to TLAL in (50) to be applicable to the general convex optimization
problem (1) and showed the nonexpansiveness of TLAL for solving efficiently the hierarchical convex optimiza-
tion (10) by plugging the extended operator TLAL into the HSDM.

Proposition 10 (LAL Operator and Linearized Augmented Lagrangian Method) Let (X ,〈·, ·〉X ,‖ · ‖X )
and (K ,〈·, ·〉K ,‖·‖K ) be real Hilbert spaces. Suppose that f ∈Γ0(X ), g= ι{0} ∈Γ0(K ) and A∈B(X ,K )
satisfy

SpLAL := argmin( f + ι{0} ◦A)(X ) 6=∅, (47)

SdLAL := argmin( f ∗ ◦A∗)(K ) 6=∅, (48)
min( f + ι{0} ◦A)(X ) =−min( f ∗ ◦A∗)(K ), (49)

10 We should remark that Proposition 9 can also be reproduced from [9, Proposition 26.1(iii) and Theorem 26.11(i)(iii)] in the
context of the monotone inclusion problems. For completeness, we present Proposition 1 and its proof in the scenario of convex
optimization.
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where SpLAL is the solution set of the primal problem and SdLAL is the solution set of the dual problem. Define
the LAL operator TLAL : X ×K → X ×K : (x,ν) 7→ (xT ,νT ) by[

xT := prox f (x−A∗Ax+A∗ν)
νT := ν −AxT .

(50)

Then

(a) Fix(TLAL) = SpLAL ×SdLAL;
(b) TLAL is nonexpansive if ‖A‖op ≤ 1;
(c) By using (αn)n∈N ⊂ [0,1] satisfying ∑n∈N αn(1 − αn) = ∞ in Fact 6 (see Section 2.2), the sequence

(xn,νn)n∈N ⊂ X ×K generated by

(xn+1,νn+1) = (1−αn)(xn,νn)+αnTLAL(xn,νn) (51)

converges weakly to a point in SpLAL ×SdLAL if ‖A‖op ≤ 1;
(d) If ‖A‖op < 1, the sequence (xn,νn)n∈N ⊂ X ×K generated by (51) with αn = 1 (n ∈ N) converges weakly

to a point in SpLAL ×SdLAL.

The iterative algorithms, in Proposition 10(c) and (d), to produce (xn)n∈N with (51) can be seen as simplest
examples of the so-called linearized augmented Lagrangian method.

The proof of Proposition 10(a) is given in Appendix B for completeness because the conditions (47–49) are
newly imposed for applications of TLAL to hierarchical convex optimizations in Theorem 19 and in Theorem 21
(see Remark 20(b) and Remark 22(a) in Section 3.2) and different from [150, (32)]. For the proof of Proposition
10(b), see [150]. Proposition 10(c) is a straightforward application of Fact 6 to Proposition 10(b). The proof of
Proposition 10(d) is given in Appendix B.

Remark 11 A primitive idea behind the update of the LAL operator TLAL is found in minimization of the
augmented Lagrangian function [81, 116]:

L : X ×K → (−∞,∞] : (x,ν) 7→ f (x)−〈ν ,Ax〉K +
1
2
‖Ax‖2

K . (52)

Indeed, by introducing

(∀x̂ ∈ X )(∀ν̂ ∈ K )

[
L

(ν̂)
1 : X → (−∞,∞] : x 7→ L (x, ν̂);

L
(x̂)

2 : K → (−∞,∞] : ν 7→ L (x̂,ν),

the zero (x⋆,ν⋆) ∈ X ×K of the partial subdifferentials of (52) is characterized as[
0 ∈ ∂L

(ν⋆)
1 (x⋆)

0 ∈ ∂L
(x⋆)

2 (ν⋆)

]
⇔
[

0 ∈ ∂ f (x⋆)−A∗ν⋆+A∗(Ax⋆)
0 =−Ax⋆

]
⇔
[

x⋆ = prox f (x⋆−A∗Ax⋆+A∗ν⋆)
ν⋆ = ν⋆−Ax⋆

]
⇔ (x⋆,ν⋆) ∈ Fix(TLAL).

2.4 Hybrid Steepest Descent Method

Consider the problem
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find x⋆ ∈ argmin
x∈Fix(T )

Θ(x) =: Ω 6=∅, (53)

where Θ ∈ Γ0(H ) is Gâteaux differentiable over T (H ) and T : H → H is a nonexpansive operator with
Fix(T ) 6=∅. The hybrid steepest descent method (HSDM)

xn+1 = T (xn)−λn+1∇Θ(T (xn)) (54)

generates a sequence (xn)n∈N to approximate successively a solution of Problem (53).

Fact 12 (Hybrid Steepest Descent Method for Nonexpansive Operators)
I. [142, special case of Theorems 3.2 and 3.3 for more general variational inequality problems] Let

T : H →H be a nonexpansive mapping with Fix(T ) 6=∅. Suppose that the gradient ∇Θ is κ-Lipschitzian
and η-strongly monotone over T (H ) := {T (x) ∈ H | x ∈ H }, which guarantees |Ω | = 1. Then, by
using any sequence (λn+1)n∈N ⊂ [0,∞) satisfying (W1) limn→+∞ λn = 0, (W2) ∑n∈N λn+1 = +∞, (W3)
∑n∈N |λn+1 − λn+2| < ∞ [or (λn+1)n∈N ⊂ (0,∞) satisfying (L1) limn→+∞ λn = 0, (L2) ∑n∈N λn+1 = +∞,
(L3) limn→+∞(λn −λn+1)λ−2

n+1 = 0], the sequence (xn)n∈N ⊂ H generated, for arbitrary x0 ∈ H , by (54)
converges strongly to the uniquely existing solution of Problem (53).

II. (Nonstrictly convex case [105, 106, 149]) Assume that dim(H ) < ∞. Suppose that (i) T : H → H is an
attracting nonexpansive operator with bounded Fix(T ) 6= ∅, (ii) ∇Θ is κ-Lipschitzian over T (H ), which
guarantees Ω 6= ∅. Then, by using11 (λn+1)n∈N ∈ ℓ2

+ \ ℓ1
+, the sequence (xn)n∈N generated by (54), for

arbitrary x0 ∈ H , satisfies limn→∞ dΩ (xn) = 0, where dΩ (xn) := miny∈Ω ‖xn − y‖.

Remark 13

(a) (Comparison between Fact 12(I) and Fact 6) Fact 6 in Section 2.2 is available for generation of a weak
convergent sequence to a point in Fix(T ), where the weak limit depends on the choices of x0 and (αn)n∈N.
Fact 12(I) guarantees the strong convergence of (xn)n∈N to a point in Fix(T ), where the strong limit is
optimal in Fix(T ) because it minimizes Θ able to be designed strategically for many applications. Note
that, thanks to Fact 12(I), we present that the LAL operator plugged into the HSDM yields an iterative
approximation, of a solution of Problem (53), whose the strong convergence is guaranteed if Θ has the
strongly monotone Lipschitzian gradient over H (see Theorem 19 below).

(b) (Boundedness assumption of Fix(T ) in Fact 12(II)) For readers who get worried about the boundedness
assumption in Fact 12(II), we present some sufficient conditions, in Section 3.3, to guarantee the bounded-
ness for Fix(T ) in the context of DRS operators and LAL operators. These conditions hold automatically
in the application to the hierarchical enhancement of the Lasso, in Section 5.2. However, the boundedness
assumption in Fact 12(II) may not be restrictive for most practitioners by just modifying our original target
(53) into

minimizeΘ(x) subject to x ∈ B(0,r)∩Fix(T ) 6=∅ (55)

with a sufficiently large closed ball B(0,r). Note that Fact 12(II) is applicable to (55) because PB(0,r) ◦T is
nonexpansive and satisfies Fix(PB(0,r) ◦T ) = B(0,r)∩Fix(T ) (see [145, Proposition 1(d)]). Similar strategy
will be utilized in the application to the hierarchical enhancement of the SVM in Section 4.2.

(c) (Conditions for Θ ) The condition for Θ ∈ Γ0(H ) in (53), where it is required to have the Lipschitzian gra-
dient ∇Θ , may not be restrictive as well for practitioners just by passing through the smooth regularizations,
e.g., Moreau-Yosida regularization (see (9) and Fact 8 in Section 2.2).

Remark 14 (On the Hybrid Steepest Descent Method)

(a) The HSDM was established originally as a generalization of the so-called Halpern-type iteration (or anchor
method) [6, 72, 90] for iteratively computing PFix(T )(x) for a nonexpansive operator T : H → H and
x ∈ H . Indeed, by choosing Ψ(·) := 1

2‖ ·−x‖2, the iteration (54) is reduced to the Halpern-type iteration.

11 ℓ1
+ denotes the set of all summable nonnegative sequences. ℓ2

+ denotes the set of all square-summable nonnegative sequences.
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(b) One can relax (L3) to limn→∞
λn

λn+1
= 1 in [140]. Moreover, if T is an averaged nonexpansive operator it was

shown in [83] that only (W1) and (W2) are required to guarantee the strong convergence.
(c) The HSDM can be robustified against the numerical errors produced possibly in the computation of T [146].
(d) Parallel versions of the HSDM were developed in [129]. Specifically, convex optimization over the Cartesian

product of the intersections of the fixed point sets of nonexpansive operators is considered, where strong
convergence theorems are established under a certain contraction assumption with respect to the weighted
maximum norm.

(e) The HSDM has been extended for the variational inequality problems over the fixed point set of certain
class of quasi-nonexpansive operators including subgradient projection operators [145, 149] and has been
applied to signal processing problems (see, e.g., [108, 149]).

(f) The mathematical properties of the HSDM, e.g., in [142, 145] have been studied extensively in various
directions by many mathematicians (see, e.g., [27, 94] for extensions in Banach spaces).

3 Hierarchical Convex Optimization with Proximal Splitting Operators

In this section, we present our central strategy for iterative approximation of the solution of the hierarchical
convex optimization (10) by plugging proximal splitting operators into the HSDM. For simplicity, we focus
on the DRS and the LAL operators as such proximal splitting operators.12 Assume that Problem (10) has a
solution, i.e., there exists at least one minimizer of Ψ over Sp, and that ( f ,g,A) satisfies its qualification condi-
tion (32) (Note: The condition (32) holds automatically for many instances of (1), see, e.g., Section 4.2 [(125)]
and Section 5.2 [Lemma 27 and (A.26)]). As explained briefly just around (22) in Section 1, for applications
of the HSDM (54) to Problem (10), we need characterization of the constraint set as Sp = Ξ(Fix(T )) with a
computable nonexpansive operator T : H →H and with a bounded linear operator Ξ ∈B(H ,X ) which en-
sures the Gâteaux differentiability of Θ :=Ψ ◦Ξ ∈Γ0(H ) with Lipschitzian gradient ∇Θ . In the following, we
introduce three examples of such pair of computable nonexpansive operator T : H →H and Ξ ∈B(H ,X ).

3.1 Plugging DRS Operators into Hybrid Steepest Descent Method

We introduce a nonexpansive operator called TDRSI of Type-I, as an instance of the DRS operator, that can
characterize Sp (see (67)) and demonstrate how this nonexpansive operator can be plugged into the HSDM for
(10).

Theorem 15 (HSDM with the DRS Operator in Product Space of Type-I). Let f ∈Γ0(X ), g ∈Γ0(K ), and
A ∈ B(X ,K ) in Problem (10) satisfy Sp 6=∅ and the qualification condition (32). Suppose that Ψ ∈ Γ0(X )
is Gâteaux differentiable with Lipschitzian gradient ∇Ψ over X and that Ω := argmin

x⋆∈Sp

Ψ(x⋆) 6= ∅. Then the

operator

TDRSI : X ×K → X ×K : (x,y) 7→ (xT ,yT ), (56)

where

12 In [149, Section 17.5], the authors introduced briefly the central strategy of plugging the Douglas-Rachford splitting operator
into the HSDM for hierarchical convex optimization. For applications of the HSDM to other proximal splitting operators, e.g., the
forward-backward splitting operator [44], the primal-dual splitting operator [47, 139] for the hierarchical convex optimization of
different types from (10), see [107, 149].
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(x1/2,y1/2) = (2p− x,2Ap− y)
(xT ,yT ) = (2prox f (x1/2)− x1/2,2proxg(y1/2)− y1/2),

(57)

can be plugged into the HSDM (54), with any α ∈ (0,1) and any (λn+1)n∈N ∈ ℓ2
+ \ ℓ1

+, as
(xn+1/2,yn+1/2) = (1−α)(xn,yn)+αTDRSI(xn,yn)

x⋆n+1 = xn+1/2 −A∗(I+AA∗)−1(Axn+1/2 − yn+1/2)

xn+1 = xn+1/2 −λn+1(I−A∗(I+AA∗)−1A)◦∇Ψ(x⋆n+1)

yn+1 = yn+1/2 −λn+1((I+AA∗)−1A)◦∇Ψ(x⋆n+1).

(58)

The algorithm (58) generates, for any (x0,y0) ∈ X ×K , a sequence (x⋆n+1)n∈N ⊂ X which satisfies

lim
n→∞

dΩ (x⋆n) = 0 (59)

if dim(X ×K )< ∞ and Fix(TDRSI) is bounded.

Remark 16 (Idea Behind the Derivation of Theorem 15)

(a) The operator TDRSI in (56) can be expressed as13

TDRSI = (2proxF −I)◦ (2proxιN (Ǎ)
−I) = (2proxF −I)◦ (2PN (Ǎ)− I) (60)

which is nothing but the DRS operator in the sense of Proposition 9 (see Section 2.3) specialized for

minimize (F + ιN (Ǎ))(X ×K ), (61)

where

F : X ×K → (−∞,∞] : (x,y) 7→ f (x)+g(y), (62)

Ǎ : X ×K → K : (x,y) 7→ Ax− y, (63)

and N (Ǎ) stands for the null space of Ǎ ∈ B(X ×K ,K ). Note that exactly in the same way as in (11),
proxF : X ×K →X ×K : (x,y) 7→ (prox f (x),proxg(y)) can be used as a computational tool if prox f and
proxg are available. Moreover, proxιN (Ǎ)

= PN (Ǎ) : X ×K → N (Ǎ) : (x,y) 7→ (p,Ap) is also available
if p in (57) is computable, hence Problem (61) is minimization of the sum of two proximable functions.
Obviously, Problem (61) is a reformulation of Problem (10) in a higher dimensional space in the sense of

Sp[in (10)] = QX

[
argmin

(x,y)∈X ×K
(F(x,y)+ ιN (Ǎ)(x,y))

]
,

where

QX : X ×K → X : (x,y) 7→ x, (64)

which is verified by

13 The use of the DRS operator in a product space as in (60) is found explicitly or implicitly in various applications, mainly for
solving (2) (see, e.g., [23, 41, 43, 59, 67, 68, 117]).



22 Isao Yamada and Masao Yamagishi

argminx∈X f (x)+g(Ax)

= QX

[
argmin(x,y)∈X ×K f (x)+g(y)+ ι{0}(Ax− y)

]
= QX

[
argmin(x,y)∈X ×K F(x,y)+ ιN (Ǎ)(x,y)

]
.

(b) For application of the HSDM (based on Fact 12(II) in Section 2.4), Theorem 15 uses the convenient expres-
sion:

Sp[in (10)] see below
= QX (proxιN (Ǎ)

(Fix(TDRSI)) (65)

= QX (PN (Ǎ)(Fix(TDRSI)) (66)

= ΞDRSI(Fix(TDRSI)) = ΞDRSI(Fix((1−α)I+αTDRSI)) (67)

in terms of attracting operator (1−α)I+αTDRSI with α ∈ (0,1) (see (34)), where

ΞDRSI := QX ◦PN (Ǎ) ∈ B(X ×K ,X ). (68)

Note that the characterization (67) is illustrated in Figure 3 (see Section 5.1) and is utilized, in Section 5.2,
in the context of the hierarchical enhancement of Lasso. To prove (65) based on Proposition 9(a) in Section
2.3, we need:

Claim 15: If f ∈ Γ0(X ), g ∈ Γ0(K ), and A ∈ B(X ,K ) in Problem (10) satisfy Sp 6=∅ and the qualifi-
cation condition (32), we have

argmin(F + ιN (Ǎ))(X ×K ) 6=∅, (69)

argmin(F∗+ ι∗
N (Ǎ) ◦ (−I))(X ×K ) 6=∅, (70)

min(F + ιN (Ǎ))(X ×K ) =−min(F∗+ ι∗
N (Ǎ) ◦ (−I))(X ×K ). (71)

Note that (69–71) correspond to (42–44) in Proposition 9 for minimization of F + ιN (Ǎ) and therefore Claim
15 is the main step in the proof of Theorem 15.

(c) To plug the operator TDRSI : H →H , with H :=X ×K , into the HSDM based on Fact 12(II) in Section
2.4, the characterization Sp = ΞDRSI(Fix((1−α)I+αTDRSI)) in (67) is utilized in the translation [exactly
in the same way as in (22)]:

Ω[in Theorem 15] = ΞDRSI(ΩDRSI), (72)
where ΩDRSI := argmin

z∈Fix(TDRSI )

ΘDRSI(z) = argmin
z∈Fix((1−α)I+αTDRSI )

ΘDRSI(z), (73)

and ΘDRSI =Ψ ◦ΞDRSI ∈ Γ0(X ×K ).
(d) Application of the HSDM to (73) yields zn+1/2 = [(1−α)I+αTDRSI ](zn),

zn+1 = zn+1/2 −λn+1∇ΘDRSI(zn+1/2)
= zn+1/2 −λn+1Ξ ∗

DRSI
∇Ψ(ΞDRSI zn+1/2),

(74)

where Ξ ∗
DRSI

is the conjugate of ΞDRSI in (68). By letting zn =: (xn,yn)∈X ×K , zn+1/2 =: (xn+1/2,yn+1/2)∈
X ×K , and x⋆n+1 := ΞDRSI zn+1/2 ∈ X , as well as, by noting

Ξ ∗
DRSI

= PN (Ǎ) ◦Q∗
X : X → X ×K : x 7→ ((I−A∗(I+AA∗)−1A)x,(I+AA∗)−1Ax),

we can verify the equivalence between (74) and (58).
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(e) Fact 12(II) in Section 2.4 guarantees limn→∞ dΩDRSI
(zn)= 0. Moreover, by noting that ΞDRSI PΩDRSI

(zn+1/2)∈
Ω (see (72)) and ΩDRSI ⊂ Fix((1−α)I+αTDRSI) (see (73)), (59) is verified as

dΩ (x⋆n+1) = dΩ (ΞDRSI zn+1/2)

≤ ‖ΞDRSI zn+1/2 −ΞDRSI PΩDRSI
(zn+1/2)‖X

≤ ‖ΞDRSI‖op‖zn+1/2 −PΩDRSI
(zn+1/2)‖H

≤ ‖ΞDRSI‖opdΩDRSI
(zn)→ 0 (n → ∞).

(The proof of Theorem 15 is given in Appendix C).

Next, we introduce another nonexpansive operator called TDRSII of Type-II, as an instance of the DRS
operator, that can characterize Sp (see (84)) and demonstrate how this nonexpansive operator can be plugged
into the HSDM for (10). The operator TDRSII is designed based on Example 7(b) in Section 2.2.

Theorem 17 (HSDM with the DRS Operator in Product Space of Type-II). Let K = Rm. Let f ∈ Γ0(X ),
g =

⊕m
i=1 gi ∈ Γ0(K ), A : X → K : x 7→ Ax = (A1x,A2x, . . . ,Amx) with Ai ∈ B(X ,R)\{0} (i = 1,2, . . . ,m)

in Problem (10) satisfy Sp 6= ∅ and the qualification condition (32). Suppose that Ψ ∈ Γ0(X ) is Gâteaux
differentiable with Lipschitzian gradient ∇Ψ over X and that Ω := argmin

x⋆∈Sp

Ψ(x⋆) 6=∅. Then the operator

TDRSII : X m+1 → X m+1 : (x(1),x(2), . . . ,x(m+1)) 7→ (x(1)T ,x(2)T , . . . ,x(m+1)
T ), (75)

where x̄ = 1
m+1 ∑m+1

j=1 x( j)

x(i)T = (2x̄− x(i))+2(AiA∗
i )

−1A∗
i (prox(AiA∗

i )gi
[Ai(2x̄− x(i))]−Ai(2x̄− x(i))) (i = 1,2, . . . ,m)

x(m+1)
T = 2prox f (2x̄− x(m+1))− (2x̄− x(m+1)),

can be plugged into the HSDM (54), with any α ∈ (0,1) and any (λn+1)n∈N ∈ ℓ2
+ \ ℓ1

+, as
(

x(1)n+1/2, . . . ,x
(m+1)
n+1/2

)
= (1−α)

(
x(1)n , . . . ,x(m+1)

n

)
+αTDRSII

(
x(1)n , . . . ,x(m+1)

n

)
x⋆n+1 =

1
m+1 ∑m+1

j=1 x( j)
n+1/2

x(i)n+1 = x(i)n+1/2 −
λn+1
m+1 ∇Ψ(x⋆n+1) (i = 1,2, . . . ,m+1).

(76)

The algorithm (76) generates, for any
(

x(1)0 , . . . ,x(m+1)
0

)
∈ X m+1, a sequence (x⋆n+1)n∈N ⊂ X which satisfies

lim
n→∞

dΩ (x⋆n) = 0 (77)

if dim(X )< ∞ and Fix(TDRSII) is bounded.

Remark 18 (Idea Behind the Derivation of Theorem 17)

(a) The operator TDRSII in (75) can be expressed as

TDRSII = (2proxH −I)◦ (2proxιD
−I) = (2proxH −I)◦ (2PD − I) (78)

which is the DRS operator in the sense of Proposition 9 (see Section 2.3) specialized for

minimize (H + ιD)(X
m+1), (79)
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where

H : X m+1 → (−∞,∞] : (x(1), . . . ,x(m+1)) 7→
m

∑
i=1

gi(Aix(i))+ f (x(m+1)), (80)

D := {(x(1), . . . ,x(m+1)) ∈ X m+1 | x(i) = x( j) (i, j = 1,2, . . . ,m+1)}. (81)

Note that exactly in the same way as in (11),

proxH(x
(1),x(2), . . . ,x(m+1))

= (proxg1◦A1
(x(1)), . . . ,proxgm◦Am

(x(m)),prox f (x
(m+1)))

can be used with (38), in Example 7(b) (see Section 2.2), as a computational tool if prox f and proxAiA∗
i g (i =

1,2, . . . ,m) are available. Moreover, proxιD
=PD : X m+1 →X m+1 : (x(1),x(2), . . . ,x(m+1)) 7→ (x̄, . . . , x̄) with

x̄ := 1
m+1 ∑m+1

i=1 x(i) is also available. Hence Problem (79) is minimization of the sum of two proximable
functions (Note: Thanks to AiA∗

i ∈R++ := {r ∈R | r > 0}, the computation of TDRSII in (78) does not require
any matrix inversion). Obviously, Problem (79) is a reformulation of Problem (10) in a higher dimensional
space in the sense of

Sp[in (10)] = QX (1)

[
argmin

(x(1),...,x(m+1))∈X m+1
(H + ιD)(x(1), . . . ,x(m+1)))

]
,

where

QX (1) : X m+1 → X : (x(1), . . . ,x(m+1)) 7→ x(1),

which is verified by

argminx∈X g(Ax)+ f (x)

= argminx∈X

m

∑
i=1

gi(Aix)+ f (x)

= QX (1)

[
argmin(x(1),...,x(m+1))∈X m+1 (H + ιD)(x(1), . . . ,x(m+1))

]
.

(b) For application of the HSDM (based on Fact 12(II) in Section 2.4), Theorem 17 uses the convenient expres-
sion:

Sp[in (10)]
see below

= QX (1)(proxιD
(Fix(TDRSII)) (82)

= QX (1)(PD(Fix(TDRSII)) (83)
= ΞDRSII(Fix(TDRSII)) = ΞDRSII(Fix((1−α)I+αTDRSII)) (84)

in terms of attracting operator (1−α)I+αTDRSII with α ∈ (0,1) (see (34)), where

ΞDRSII := QX (1) ◦PD ∈ B(X m+1,X ). (85)

To prove (82) based on Proposition 9(a) in Section 2.3, we need:

Claim 17: If dim(K )< ∞, f ∈Γ0(X ), g =
⊕m

i=1 gi ∈Γ0(K ), A : X →K : x 7→ Ax = (A1x,A2x, . . . ,Amx)
with Ai ∈ B(X ,R) \ {0} (i = 1,2, . . . ,m) in Problem (10) satisfy Sp 6= ∅ and the qualification condition
(32), we have
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argmin(H + ιD)(X
m+1) 6=∅, (86)

argmin(H∗+ ι∗D ◦ (−I))(X m+1) 6=∅, (87)

min(H + ιD)(X
m+1) =−min(H∗+ ι∗D ◦ (−I))(X m+1). (88)

Note that (86–88) correspond to (42–44) in Proposition 9 for minimization of H + ιD and therefore Claim
17 is the main step in the proof of Theorem 17.

(c) To plug the operator TDRSII : H → H , with H := X m+1, into the HSDM based on Fact 12(II) in Section
2.4, the characterization Sp = ΞDRSII(Fix((1−α)I+αTDRSII)) in (84) is utilized in the translation [exactly
in the same way as in (22)]:

Ω[in Theorem 17] = ΞDRSII(ΩDRSII),

where ΩDRSII := argmin
X∈Fix(TDRSII )

ΘDRSII(X) = argmin
X∈Fix((1−α)I+αTDRSII )

ΘDRSII(X), (89)

and ΘDRSII =Ψ ◦ΞDRSII ∈ Γ0(X
m+1).

(d) Application of the HSDM to (89) yieldsXn+1/2 = [(1−α)I+αTDRSII ](Xn),
Xn+1 = Xn+1/2 −λn+1∇ΘDRSII(Xn+1/2)

= Xn+1/2 −λn+1Ξ ∗
DRSII

∇Ψ(ΞDRSIIXn+1/2),
(90)

where Ξ ∗
DRSII

is the conjugate of ΞDRSII in (85). By letting Xn =: (x(1)n , . . . ,x(m+1)
n ) ∈ X m+1, Xn+1/2 =:

(x(1)n+1/2, . . . ,x
(m+1)
n+1/2) ∈ X m+1, and x⋆n+1 := ΞDRSIIXn+1/2 ∈ X , as well as, by noting

Ξ ∗
DRSII

= PD ◦Q∗
X (1) : X → X m+1 : x 7→ 1

m+1
(x,x, . . . ,x),

we can verify the equivalence between (90) and (76).
(e) In the same way as in Remark 16(e), Fact 12(II) in Section 2.4 guarantees limn→∞ dΩDRSII

(Xn) = 0 and (77).

(The proof of Theorem 17 is given in Appendix D).

3.2 Plugging LAL Operator into Hybrid Steepest Descent Method

We introduce a nonexpansive operator called TLAL, as an instance of the LAL operator, that can characterize
Sp (see (96)) and demonstrate how this nonexpansive operator can be plugged into the HSDM for (10). In
particular, if ∇Ψ is strongly monotone over X , TLAL can be plugged into the HSDM based on Fact 12(I) in
Section 2.4, which results in a strongly convergent iterative algorithm for (10) (see Theorem 19). Of course,
TLAL can also be plugged into the HSDM based on Fact 12(II) (see Theorem 21).

Theorem 19 (Strong Convergence Achieved by HSDM with LAL Operator). Let f ∈ Γ0(X ), g ∈ Γ0(K )
and A ∈ B(X ,K ) in Problem (10) satisfy not only Sp 6= ∅ and the qualification condition (32) but also
‖Ǎ‖op ≤ 1

u (∃u > 0) with Ǎ in (63). Suppose also that Ψ ∈ Γ0(X ) is Gâteaux differentiable with Lipschitzian
as well as strongly monotone gradient ∇Ψ over X . Then the operator

TLAL : X ×K ×K → X ×K ×K (91)

:

x
y
ν

 7→

xT
yT
νT

=

 prox f (x−u2(A∗Ax−A∗y)+uA∗ν)
proxg(y−u2(−Ax+ y)−uν)
ν −u(AxT − yT )
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can be plugged into HSDM (54), with any α ∈ (0,1] and any ηxy,ην > 0, as
(xn+1/2,yn+1/2,νn+1/2) = (1−α)(xn,yn,νn)+αTLAL(xn,yn,νn)
xn+1 = xn+1/2 −λn+1(∇Ψ(xn+1/2)+ηxyA∗(Axn+1/2 − yn+1/2))
yn+1 = yn+1/2 +λn+1ηxy(Axn+1/2 − yn+1/2)
νn+1 = νn+1/2 −λn+1ην vn+1/2.

(92)

The algorithm (92) generates, for any (x0,y0,ν0) ∈ X ×K ×K , a sequence (xn)n∈N ⊂ X which converges
strongly to the uniquely existing solution of Problem (10) if (λn+1)n∈N ⊂ [0,∞) satisfies conditions (W1–W3)
[or (λn+1)n∈N ⊂ (0,∞) satisfies (L1–L3)] in Fact 12(I) in Section 2.4.

Remark 20 (Idea Behind the Derivation of Theorem 19)

(a) The operator TLAL in (91) can be expressed as

(z,ν) 7→ (zT ,νT ) with
{

zT = proxF(z− (uǍ)∗(uǍ)z+(uǍ)∗ν)
νT = ν −uǍzT

(93)

by introducing z := (x,y) and zT := (xT ,yT ), which is the LAL operator of Proposition 10 (see Section 2.3)
specialized for

minimize (F + ι{0} ◦ (uǍ))(X ×K ), (94)

where F and Ǎ are defined, respectively, in (62) and in (63). Note that exactly in the same way as in (11),
proxF : X ×K →X ×K : (x,y) 7→ (prox f (x),proxg(y)) can be used as a computational tool if prox f and
proxg are available. Obviously, Problem (94) is a reformulation of Problem (10) in a higher dimensional
space in the sense of

Sp[in (10)] = QX

[
argmin

(x,y)∈X ×K
F(x,y)+ ι{0}(uǍ(x,y))

]
,

where QX is defined as in (64), which is verified by

Sp = argminx∈X f (x)+g(Ax)

= QX

[
argmin(x,y)∈X ×K f (x)+g(y)+ ι{0}(Ax− y)

]
= QX

[
argmin(x,y)∈X ×K F(x,y)+ ι{0}(uǍ(x,y))

]
.

(b) For application of the HSDM (based on Fact 12(I) in Section 2.4), Theorem 19 uses the convenient expres-
sion:

Sp[in (10)]

= QX ◦QX ×K

[
argmin(F + ι{0} ◦ (uǍ))(X ×K )× argmin(F∗ ◦ (uǍ)∗)(K )

]
see below

= QX ◦QX ×K (Fix(TLAL)) (95)
= ΞLAL(Fix(TLAL)) = ΞLAL(Fix((1−α)I+αTLAL)) (96)

in terms of nonexpansive operator (1−α)I+αTLAL with α ∈ (0,1] (Note: The nonexpansiveness of TLAL
is ensured by Proposition 10(b) in Section 2.3 with ‖uǍ‖op ≤ 1)

QX ×K : X ×K ×K → X ×K : (x,y,ν) 7→ (x,y)

ΞLAL := QX ◦QX ×K ∈ B(X ×K ×K ,X ), (97)
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where QX is defined as in (64). To prove (95) based on Proposition 10(a) in Section 2.3, we need:

Claim 19: If f ∈ Γ0(X ), g ∈ Γ0(K ) and A ∈ B(X ,K ) in Problem (10) satisfy not only Sp 6=∅ and the
qualification condition (32) but also ‖Ǎ‖op ≤ 1

u (∃u> 0) with Ǎ in (63), we have

argmin(F + ι{0} ◦ (uǍ))(X ×K ) 6=∅, (98)

argmin(F∗ ◦ (uǍ)∗)(K ) 6=∅, (99)

min(F + ι{0} ◦ (uǍ))(X ×K ) =−min(F∗ ◦ (uǍ)∗)(K ). (100)

Note that (98–100) correspond to (47–49) in Proposition 10 for minimization of F+ ι{0} ◦(uǍ) and therefore
Claim 19 is the main step in the proof of Theorem 19. In Claim 19, we also remark that (uǍ)∗ in (99) is the
conjugate of uǍ and given by

(uǍ)∗ : K → X ×K : ν 7→ (uA∗ν ,−uν). (101)

(c) To plug the operator TLAL : H → H , with H := X ×K ×K , into the HSDM based on Fact 12(I) in
Section 2.4, the characterization Sp = ΞLAL(Fix((1−α)I+αTLAL)) in (96) is utilized in the translation:

Ω[in Theorem 19] = ΞLAL(Ω reg
LAL), (102)

where Ω reg
LAL := argmin

w∈Fix(TLAL)

Θ reg
LAL(w) = argmin

w∈Fix((1−α)I+αTLAL)

Θ reg
LAL(w), (103)

Θ reg
LAL : X ×K ×K → R

: w⋆ 7→Ψ(ΞLALw⋆)+
ηxy

2
‖Ǎ◦QX ×K w⋆‖2

K +
ην
2
‖QK w⋆‖2

K ,

for ηxy,ην > 0 with QK : X ×K ×K : (x,y,ν) 7→ ν . Note that, since ∇Ψ is strongly monotone over X ,
the gradient ∇Θ reg

LAL is strongly monotone over X ×K ×K (for the proof, see [150, Theorem 2(d)]).
(d) Application of the HSDM to (103) yields[

wn+1/2 = [(1−α)I+αTLAL](wn)
wn+1 = wn+1/2 −λn+1∇Θ reg

LAL(wn+1/2).
(104)

By letting wn := (xn,yn,νn)∈X ×K ×K and wn+1/2 := (xn+1/2,yn+1/2,νn+1/2)∈X ×K ×K , as well
as, by noting

Ξ ∗
LAL = Q∗

X ×K ◦Q∗
X : X → X ×K ×K : x 7→ (x,0,0), (105)

(Ǎ◦QX ×K )∗ : K → X ×K ×K : y 7→ (A∗y,−y,0),
Q∗

K : K → X ×K ×K : ν 7→ (0,0,ν),

we can verify the equivalence between (104) and (92).
(e) Fact 12(I) in Section 2.4 guarantees that (wn)n∈N converges strongly to a point in Ω reg

LAL. Hence, (ΞLALwn(=
xn))n∈N also converges strongly to a point in Ω (see (102)).

(The proof of Theorem 19 is given in Appendix E).

Theorem 21 (HSDM with the LAL Operator Based on Fact 12(II)). Let f ∈ Γ0(X ), g ∈ Γ0(K ) and A ∈
B(X ,K ) in Problem (10) satisfy not only Sp 6= ∅ and the qualification condition (32) but also ‖Ǎ‖op ≤ 1

u

(∃u> 0) with Ǎ in (63). Suppose also that Ψ ∈Γ0(X ) is Gâteaux differentiable with Lipschitzian gradient ∇Ψ
over X and that Ω := argmin

x⋆∈Sp

Ψ(x⋆) 6= ∅. Then the operator TLAL in (91) can be plugged into HSDM (54),

with any α ∈ (0,1) and any (λn+1)n∈N ∈ ℓ2
+ \ ℓ1

+, as
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(xn+1/2,yn+1,νn+1) = (1−α)(x⋆n,yn,νn)+αTLAL(x⋆n,yn,νn)
x⋆n+1 = xn+1/2 −λn+1∇Ψ(xn+1/2).

(106)

The algorithm (106) generates, for any (x⋆0,y0,ν0) ∈ X ×K ×K , a sequence (x⋆n)n∈N ⊂ X which satisfies

lim
n→∞

dΩ (x⋆n) = 0 (107)

if dim(X ×K ×K )< ∞ and Fix(TLAL) is bounded.

Remark 22 (Idea Behind the Derivation of Theorem 21)

(a) Following Remark 20(a)(b), we obtain the characterization

Sp[in (10)] = ΞLAL(Fix((1−α)I+αTLAL)),

in (96) (see also ΞLAL in (97)), with the attracting operator (1−α)I+αTLAL for α ∈ (0,1) (see (34)). This
characterization is utilized, to plug TLAL : H → H (H := X ×K ×K ) into the HSDM based on Fact
12(II) in Section 2.4, in the translation [see also (22)]:

Ω[in Theorem 21] = ΞLAL(ΩLAL),

where ΩLAL := argmin
w∈Fix(TLAL)

ΘLAL(w) = argmin
w∈Fix((1−α)I+αTLAL)

ΘLAL(w) (108)

and ΘLAL :=Ψ ◦ΞLAL ∈ Γ0(X ×K ×K ).
(b) Application of the HSDM to (108) yieldswn+1/2 = [(1−α)I+αTLAL](wn),

wn+1 = wn+1/2 −λn+1∇ΘLAL(wn+1/2)
= wn+1/2 −λn+1Ξ ∗

LAL∇Ψ(ΞLALwn+1/2),
(109)

where Ξ ∗
LAL is the conjugate of ΞLAL. By letting wn =: (x⋆n,yn,νn) ∈ X × K × K and wn+1/2 =:

(xn+1/2,yn+1/2,νn+1/2) ∈ X ×K ×K , as well as, by noting (105), we can verify the equivalence between
(109) and (106).

(c) In the same way as in Remark 16(e), Fact 12(II) in Section 2.4 guarantees limn→∞ dΩLAL(wn) = 0 and (107).

(The proof of Theorem 21 is omitted, see Remark 22).

3.3 Conditions for Boundedness of Fixed Point Sets of DRS and LAL Operators

In Theorems 15, 17, and 21, the boundednesses of Fix(TDRSI), Fix(TDRSII), and Fix(TLAL) are required for
the algorithms (58), (76), and (106) to produce (x⋆n+1)n∈N satisfying limn→∞ dΩ (x⋆n) = 0. Theorem 23 below
presents sufficient conditions for the boundednesses of these fixed point sets. Corollary 24 below presents a
stronger condition which will be used in Section 5.2 to guarantee the boundedness of Fix(TDRSI) in the context
of the hierarchical enhancement of Lasso.

Theorem 23. Let f ∈ Γ0(X ), g ∈ Γ0(K ) and A ∈ B(X ,K ) in Problem (10) satisfy Sp 6=∅ and the qualifi-
cation condition (32). Let (A∗)−1 : X → 2K : x 7→ {y ∈ K | x = A∗y}. Then we have
(a) Sp, ∂ f (Sp), and

⋃
x∈Sp

(
[−(A∗)−1(∂ f (x))]∩∂g(Ax)

)
⊂ K are bounded

⇒ Fix(TDRSI)⊂ X ×K in Theorem 15 is bounded.

(b) If Ǎ in (63) satisfies ‖Ǎ‖op ≤ 1
u (∃u> 0), then
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Sp and
⋃

x∈Sp

(
[−(A∗)−1(∂ f (x))]∩∂g(Ax)

)
⊂ K are bounded

⇒ Fix(TLAL)⊂ X ×K ×K in Theorem 21 is bounded.

(c) If, in particular, K = Rm, g =
⊕m

i=1 gi ∈ Γ0(Rm), A : X → Rm : x 7→ Ax = (A1x,A2x, . . . ,Amx) with Ai ∈
B(X ,R)\{0} (i = 1,2, . . . ,m) in Problem (10), then

Sp and
⋃

x∈Sp

([�m
j=1 A∗

j∂g j(A jx)
]
× [∂ f (x)∩ (−∑m

i=1 A∗
i ∂gi(Aix))]

)
are bounded

⇒ Fix(TDRSII)⊂ X m+1 in Theorem 17 is bounded.

(The proof of Theorem 23 is given in Appendix F.)
The following simple relations⋃

x∈Sp

(
[−(A∗)−1(∂ f (x))]∩∂g(Ax)

)
[in Theorem 23(a)(b)]

⊂
[
(−(A∗)−1(∂ f (Sp)))∩∂g(K )

]
and⋃

x∈Sp

([�m
j=1 A∗

j∂g j(A jx)
]
× [∂ f (x)∩ (−∑m

i=1 A∗
i ∂gi(Aix))]

)
[in Theorem 23(c)]

⊂
[�m

j=1 A∗
j∂g j(R)

]
× [−∑m

i=1 A∗
i ∂gi(R)]

lead to the corollary below.

Corollary 24 Let f ∈ Γ0(X ), g ∈ Γ0(K ), A ∈ B(X ,K ) in Problem (10), and Ǎ in (63) satisfy Sp 6=∅, the
qualification condition (32), and ‖Ǎ‖op ≤ 1

u (∃u> 0). Then we have
(a) Sp,∂ f (Sp) and (−(A∗)−1(∂ f (Sp)))∩∂g(K ) are bounded

⇒
[

Fix(TDRSI)⊂ X ×K in Theorem 15 is bounded;
Fix(TLAL)⊂ X ×K ×K in Theorem 21 is bounded.

(b) If, in particular, K = Rm, g =
⊕m

i=1 gi ∈ Γ0(Rm), A : X → Rm : x 7→ Ax = (A1x,A2x, . . . ,Amx) with Ai ∈
B(X ,R)\{0} (i = 1,2, . . . ,m) in Problem (10), then

Sp and ∂gi(R) (i = 1,2, . . . ,m) are bounded

⇒ Fix(TDRSII)⊂ X m+1 in Theorem 17 is bounded.

4 Application to Hierarchical Enhancement of Support Vector Machine

4.1 Support Vector Machine

Consider a supervised learning problem for estimating a binary function

L : Rp →{−1,1}

with a given training dataset D := {(xi,yi) ∈ Rp ×{−1,1} | i = 1,2, . . . ,N}, where yi is a possibly corrupted
version of the label L(xi) of the point xi. The support vector machine (SVM) has been recognized as one of
the most successful supervised machine learning algorithms for such a learning problem. For simplicity, we
focus on the linear SVM because the nonlinear SVM exploiting the so-called Kernel trick can be viewed as an
instance of the linear classifiers in the Reproducing Kernel Hilbert Spaces (RKHS).

The dataset D is said to be linearly separable if there exists (w,b) ∈ (Rp \{0})×R defining a (p− 1)-
dimensional hyperplane

Π(w,b) := {x ∈ Rp | w>x−b = 0}= Πt(w,b) (∀t > 0) (110)
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which satisfies

{xi ∈ Rp | (xi,1) ∈ D} ⊂ Π+
(w,b) := {x ∈ Rp | w>x−b > 0}

{xi ∈ Rp | (xi,−1) ∈ D} ⊂ Π−
(w,b) := {x ∈ Rp | w>x−b < 0}

}
. (111)

In such a case, the so-called linear classifier is defined as a mapping

L(w,b) : Rp →{−1,1} : x 7→

{
+1 if x ∈ Π+

(w,b),

−1 if x ∈ Π−
(w,b),

(112)

which is hopefully a good approximation of the function L observed partially through the training dataset D . If
D is linearly separable, there also exists infinitely many (w,b) ∈ Rp ×R satisfying

D+ := {xi ∈ Rp | (xi,1) ∈ D} ⊂ Π≥1
(w,b) := {x ∈ Rp | w>x−b ≥ 1}

D− := {xi ∈ Rp | (xi,−1) ∈ D} ⊂ Π≤−1
(w,b) := {x ∈ Rp | w>x−b ≤−1}

}
, (113)

which is confirmed by rescaling (w,b) ∈ Rp ×R in (110) with a constant t ≥ 1/min{|w>xi −b|}N
i=1 > 0.

The half-spaces Π≥1
(w,b) and Π≤−1

(w,b) defined in (113) are main players in the following consideration on the
linear classifier L(w,b) even for linearly non-separable data D . In this paper, the margin of the linear classifier
L(w,b) in (112) is defined by

1
2

dist
(

Π≥1
(w,b),Π

≤−1
(w,b)

)
=

1
2

min
x+∈Π≥1

(w,b),x−∈Π≤−1
(w,b)

‖x+−x−‖=
1

‖w‖
.

By using the function h in (39) and

(∀z ∈ Rp)


d
(

z,Π≥1
(w,b)

)
=

{ |w>z−b−1|
‖w‖ =

1−(w>z−b)
‖w‖ if z 6∈ Π≥1

(w,b),

0 otherwise,

d
(

z,Π≤−1
(w,b)

)
=

{ |w>z−b+1|
‖w‖ =

1+(w>z−b)
‖w‖ if z 6∈ Π≤−1

(w,b),

0 otherwise,

we deduce

‖w‖

[
∑

z∈D+

d
(

z,Π≥1
(w,b)

)
+ ∑

z∈D−

d
(

z,Π≤−1
(w,b)

)]
=

N

∑
i=1

h
(

yi

(
w>xi −b

))
(114)

which clarifies the geometric interpretation of “the empirical hinge loss of L(w,b)” defined in the right hand
side of (114) and ensures

Condition (113) ⇔
N

∑
i=1

h
(

yi

(
w>xi −b

))
= 0. (115)

For linearly separable data D , among all L(w,b) satisfying (113), the Support Vector Machine (SVM) L(w⋆,b⋆)
was proposed in 1960s by Vapnik (see, e.g.,[135, 136]) as a special linear classifier which achieves maximal
margin, i.e.,

1
2

dist
(

Π≥1
(w⋆,b⋆),Π

≤−1
(w⋆,b⋆)

)
= max

(w,b) satisfies (115)

1
2

dist
(

Π≥1
(w,b),Π

≤−1
(w,b)

)
. (116)
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Therefore the SVM L(w⋆,b⋆) for linearly separable D is given as the solution of the following convex opti-
mization problem:

minimize ‖w‖2subject to
N

∑
i=1

h
(

yi

(
w>xi −b

))
= 0 (117)

m

minimize ‖w‖2subject to (w,b) ∈ argmin
(ŵ,b̂)∈Rp×R

N

∑
i=1

h
(

yi

(
ŵ>xi − b̂

))
, (118)

where the last equivalence holds true under the linear separability of D because of the nonnegativity of h in
(39).

The SVM defined equivalently in (116) or (117) or (118) for linearly separable training data has been
extended for applications to even possibly linearly nonseparable training data D where the existence of
(w,b) ∈ Rp ×R satisfying (113) is no longer guaranteed. One of the most widely accepted extensions of (118)
is known as the soft margin hyperplane [14, 25, 48, 73] which is characterized as a solution to the optimization
problem:

minimize, w.r.t. (w,b),
1
2
‖w‖2 +C

N

∑
i=1

h
(

yi(w>xi −b)
)

(119)

or equivalently

minimize, w.r.t. (w,b,ξ ),
1
2
‖w‖2 +C

N

∑
i=1

ξi

subject to yi

(
w>x−b

)
≥ 1−ξi and ξi ≥ 0 (i = 1,2, . . . ,N), (120)

where C> 0 is a tuning parameter, and ξi (i = 1,2, . . . ,N) are slack variables.
Along the Cover’s theorem (on the capacity of a space in linear dichotomies) [49], saying that the probability

of any grouping of the points x1,x2, . . . ,xN ,∈ Rl , in general position, into two classes to be linearly separable
tends to unity as l → ∞, another extension of the strategy L(w⋆,b⋆) of (116) into higher dimensional spaces
was made in [16, 49], for application to possibly linearly nonseparable training data D , by passing through a
certain nonlinear transform N : Rp →Rl (l � p) of the original training data D := {(xi,yi)∈Rp×{−1,1} | i=
1,2, . . . ,N} to D := {(N(xi),yi) ∈ Rl ×{−1,1} | i = 1,2, . . . ,N}, where the nonlinear transform N is defined
usually in terms of kernel built in the theory of the Reproducing Kernel Hilbert Space (RKHS) [2, 124, 126] for
exploiting the so-called kernel trick.

4.2 Optimal Margin Classifier with Least Empirical Hinge Loss

As suggested in [48, Section 3], the original goal behind the soft margin hyperplane in (119) or (120) seems to
determine (w⋆⋆,b⋆⋆) ∈ (Rp \{0})×R as the solution of the following nonconvex hierarchical optimization:

minimize
1
2
‖w⋆‖2 (121)

subject to (w⋆,b⋆) ∈ argmin
(w,b)

|E (w,b)| , (122)

where | · | stands for the cardinality of a set and E (w,b)⊂ D+∪D− is the training error set defined as
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E (w,b) :=
{

z ∈ D+ | d
(

z,Π≥1
(w,b)

)
> 0
}
∪
{

z ∈ D− | d
(

z,Π≤−1
(w,b)

)
> 0
}
, (123)

i.e., determining a special hyperplane (w⋆⋆,b⋆⋆), which achieves maximal margin in the set argmin(w,b) |E (w,b)|,
is desired.

Unfortunately, since the problem to determine (w⋆,b⋆) in (122) is in general NP-hard [15, 48, 84] and since
(114) implies that

(122) ⇔ (w⋆,b⋆) ∈ argmin
(w,b)

N

∑
i=1

[
lim
σ↓0

hσ
(

yi(w>xi −b)
)]

,

the original goal set in (121–123) was replaced in [48, Section3] by a realistic goal (119) [or (120)] for a
sufficiently large constant C> 0. However, unlike the desired solution of (121–123), the soft margin hyperplane
in (119) applied to linearly separable data has no guarantee to reproduce the original SVM in (116).

The above observations induce a natural question:
Is the solution of (119) for general training data really a mathematically sound extension of the original SVM
defined equivalently in (116) or (117) or (118) specialized for linearly separable training data ?14

Clearly, this question comes from essentially common concern as seen in Scenario 1, therefore, an alternative
natural extension of the original SVM in (118) would be the solution of the optimization problem:

minimize
1
2
‖w⋆‖2 subject to (w⋆,b⋆) ∈ Γ := argmin

(w,b)∈Rp×R

N

∑
i=1

h
(

yi(w>xi −b)
)

(124)

which does not seem different from (118) at a glance but is defined even possibly for linearly nonseparable
training data D . Remark that the hierarchical convex optimization problem (124) is a more faithful convex
relaxation of (121–123) than the convex optimization (119) [or its equivalent formulation (120) with slack
variables.15] for the soft margin hyperplane. This is because the solution of (124) for linearly separable data
certainly reproduces the original SVM in (116). As remarked in Example 1(b) in Section 1, in general, the soft
margin hyperplane via (119) for a fixed constant C> 0 does not achieve the hierarchical optimality in the sense
of (124). Fortunately, Problem (124) falls in the class of the hierarchical convex optimization problems of type
(10).

In the following, we demonstrate how Problem (124) can be solved by a proposed strategy in Section 3.
Let X := Rp ×R, Ai : X → R : (w,b) 7→ yi(x>i w−b) (i = 1,2, . . . ,N), f : X → R : (w,b) 7→ h(AN(w,b)),
g :=

⊕N−1
i=1 h, and A : Rp+1 → RN−1 : (w,b) 7→ (Ai(w,b))N−1

i=1 . By using these translations, we can express the
hinge loss function, in the form of the first stage cost function of (10), as

N

∑
i=1

h
(

yi(w>xi −b)
)
= g◦A(w,b)+ f (w,b)

14 This question is common even for the soft margin SVM applied to the transformed data D employed in [16] because the linear
separability of D is not always guaranteed.
15 In terms of slack variables, Problem (124) can also be restated as

minimize
1
2
‖w⋆‖2

subject to (w⋆,b⋆,ξ ⋆) ∈ argmin
(w,b,ξ )∈Rp×R×RN

N

∑
i=1

[ξi + ιSi (w,b,ξ )+ ι�i (w,b,ξ )] ,

where Si :=
{
(w,b,ξ ) ∈ Rp ×R×RN | yi

(
w>xi −b

)
≥ 1−ξi

}
and �i :=

{
(w,b,ξ ) ∈ Rp ×R×RN | ξi ≥ 0

}
(i = 1,2, . . . ,N).
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and its associated qualification condition (see (32)) is verified by

ri(dom(g)−Adom( f )) = ri
(
RN−1 −Adom( f )

)
= ri

(
RN−1)= RN−1 3 0. (125)

Note that, for any γ ∈R++, the proximity operator proxγh can be computed as (40) in Example 7(c) (see Section
2.2) and therefore prox f = proxh◦AN

can also be computed by applying (38) and (40) in Example 7(b)(c).
Moreover, by introducing Ψ : Rp ×R → R : (w,b) 7→ 1

2‖w‖2, we can regard Problem (124) as an instance
of Problem (10) under the assumption of Sp := Γ 6= ∅.16 In fact, we can apply Theorem 15, Theorem 17,
and Theorem 21 to (124) because Ψ is not strictly convex. In the following numerical experiment, we applied
Theorem 17 to (124) with slight modification16.

4.3 Numerical Experiment: Margin Maximization with Least Empirical Hinge Loss

We demonstrate that, as an extension of the original SVM in (116), the hierarchical enhancement of the SVM
in (124) is more faithful to the original SVM than the soft margin SVM (119). In our experiment, we applied
the original SVM in (116), the soft margin SVM in (119), and the proposed hierarchical enhancement of the
SVM in (124) to the Iris dataset which is famous dataset used firstly in Fisher’s paper [65]. This data set has 150
sample points, which are divided into three classes (I(setosa), II(versicolor), III(virginica)), and each sample
point has four features (sepal length, sepal width, petal length, and petal width). From Iris dataset, we construct
two datasets: separable Dsep ⊂ R2 ×{−1,1} with |Dsep| = 100 comprising all the samples of Class I and
Class II having only sepal length and sepal width; and non-separable Dnsep ⊂ R2 ×{−1,1} with |Dnsep|= 100
comprising all the samples of Class II and Class III having only petal length and petal width. For each linear
classifier L(w,b) of our interest, the three hyperplanes Π(w,b), Π(w,b+1), Π(w,b−1) (see (111)) are drawn in Figure
1 and Figure 2, in cyan for “Original SVM”, in green for “Soft Margin SVM”, and in magenta for the proposed
“M2LEHL” (which stands for the Margin Maximization with Least Empirical Hinge Loss), respectively, where
(w,b)org is obtained by applying a quadratic programming solver quadprog in Matlab to (116), (w,b)soft is
obtained by applying a soft margin SVM solver fitcsvm (with the default setting, i.e., C = 1) in Matlab to
(119), and (w,b)M2LEHL is obtained by applying the proposed algorithmic solution in Section 4.2, to (124),
designed based on Theorem 17 with slight modification16.

Figure 1 illustrates the resulting separating hyperplanes for the separable dataset Dsep. Since the magenta
lines are completely overlapped with cyan lines, “M2LEHL” reproduces “Original SVM”, as explained in just
after (124). “Soft Margin SVM” does not succeed in maximizing the margin, i.e., (124) is a more faithful
extension of the original SVM in (116) than the soft margin SVM (119).

Figure 2 illustrates the resulting separating hyperplanes for the nonseparable dataset Dnsep. Since the original
SVM (116) has no solution, “Original SVM” is not depicted. As the performance measure, we employ the
number of errors |E (·)| defined in (123) along the original goal (121) (as suggested in [48, Sec. 3]). Though
“Soft Margin SVM” has 21 errors, “M2LEHL” achieves only 6 errors, which demonstrates that (124) is more
effective formulation for approaching to the original goal (121) than the soft margin SVM (119).

16 If we need to guarantee Sp[in (10)] 6=∅, we recommend the following slight modification of (124):

minimize
w⋆∈Γ̃

1
2
‖w⋆‖2 subject to Γ̃ := argmin

(w,b)∈Rp×R

[
Φ(w,b) := ιB(0,r)(w,b)+

N

∑
i=1

h
(

yi(w>xi −b)
)]

with a sufficiently large closed ball B(0,r), where Sp := Γ̃ 6=∅ is guaranteed due to the coercivity of Φ . Fortunately, our strategies
in Section 3 are still applicable to this modified problem because it is also an instance of (8) which can be translated into (10) as
explained in Section 1. In the application of Theorem 17 in Section 3.1 to this modification, the boundedness of Fix(TDRSII ) is
automatically guaranteed because of Corollary 24(b) (see Section 3.3) and the boundedness of both Γ̃ ⊂ B(0,r) and ∂h(R) =
∂h(R\{1})∪∂h({1}) = [−1,0].
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Fig. 1 Comparison between M2LEHL, Original SVM, and Soft Margin SVM (Case of a separable training dataset Dsep): M2LEHL
reproduces Original SVM.
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Fig. 2 Comparison between M2LEHL and Soft Margin SVM (Case of a nonseparable training dataset Dnsep).

5 Application to Hierarchical Enhancement of Lasso

5.1 TREX : A Nonconvex Automatic Sparsity Control of Lasso

Consider the estimation of a sparse vector btru ∈ Rp in the standard linear regression model:

z = Xbtru +σe, (126)

where z = (z1, . . . ,zN)
> ∈ RN is a response vector, X ∈ RN×p a design matrix, σ > 0 a constant, e =

(ε1, . . . ,εN)
> the noise vector, each εi is the realization of a random variable with mean zero and variance

1.
The Lasso (Least Absolute Shrinkage and Selection Operator) [132] has been used widely as one of the

most well-known sparsity aware statistical estimation methods [73, 74]. The Lasso for (126) is defined as a
minimizer of the least squares criterion with ℓ1 penalty, i.e.,



1 Hierarchical Convex Optimization by the Hybrid Steepest Descent Method 35

bLasso(λ ) ∈ argmin
b∈Rp

1
2N

‖z−Xb‖2
2 +λ‖b‖1,

where the tuning parameter λ > 0 aims at controlling the sparsity of bLasso(λ ). However selection of λ > 0
is highly influential to bLasso(λ ) and therefore its reliable way of selection has been strongly desired. Among
many efforts toward automatic sparsity control of Lasso, the following prediction bound offers a firm basis and
has been applied widely in recent strategies including [50, 69, 77, 89].

Fact 25 (A Prediction Bound of Lasso [87, 120]) For λ ≥ 2‖X>(z−Xbtru)‖∞
N , it holds ‖XbLasso(λ )−Xbtru‖2

N ≤
2λ‖btru‖1.

The TREX (Tuning-free Regression that adapts to the Entire noise σe and the design matrix X) [89] is one of
the state-of-the-art strategies based on Fact 25. The TREX is defined as a solution of a nonconvex optimization
problem:

find bTREX ∈ argmin
b∈Rp

‖Xb− z‖2∥∥X> (Xb− z)
∥∥

∞
+β‖b‖1, (127)

where
∥∥X> (Xb− z)

∥∥
∞ = max1≤ j≤p

∣∣∣X>
: j (Xb− z)

∣∣∣, X: j denotes the jth column of X, and the parameter β can
be set to a constant value (β = 1/2 being the default choice).

The authors in [13] cleverly decomposed the nonconvex optimization (127) into 2p subproblems:

find b( j)
TREX ∈ argmin

b∈Rp

x>j (Xb−z)>0

[
‖Xb− z‖2

βx>j (Xb− z)
+‖b‖1

]
, (128)

where

x j =

{
X: j ( j = 1,2, . . . , p);
−X: j−p ( j = p+1, p+2, . . . ,2p).

(129)

More precisely, bTREX in (127) is characterized as

bTREX ∈ Q̂Rp

 argmin
(b, j)∈Rp×{1,2,...,2p}

x>j (Xb−z)>0

(
‖Xb− z‖2

βx>j (Xb− z)
+‖b‖1

) , (130)

where

Q̂Rp : Rp ×{1,2, . . . ,2p}→ Rp : (b, j) 7→ b. (131)

Remarkably, each subproblem (128) was shown to be a convex optimization and solved in [13] with a
second-order cone program (SOCP) [92].

Recently, for sound extensions of the subproblem (128) as well as for sound applications of proximal split-
ting, a successful reformulation of (130) was made for general q > 1 in [38] as

bTREXq ∈ STREXq := Q̂Rp

[
argmin

(b, j)∈Rp×{1,2,...,2p}
g( j,q)(M jb)+‖b‖1

]
(132)

whose solution bTREXq is given, by passing through 2p convex subproblems, as b( j⋆)
TREXq

, where
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TREXq

∈ S( j,q) := argmin
b∈Rp

[
g( j,q)(M jb)+‖b‖1

]
( j = 1,2, . . . ,2p);

j⋆ ∈ argmin
j∈{1,2,...,2p}

[
g( j,q)(M jb

( j)
TREXq

)+‖b( j)
TREXq

‖1

]
,

(133)

g( j,q) : R×RN → (−∞,∞] : (η ,y) 7→


‖y−z‖q

β (η−x>j z)q−1 , if η > x>j z;

0, if y = z and η = x>j z;
+∞, otherwise

(134)

is a proper lower semicontinuous convex function, and

M j : Rp → R×RN : b 7→
(

x>j Xb,Xb
)

(135)

is a bounded linear operator. The estimator bTREXq in (132) is called the generalized TREX in [38] where, as its
specialization, bTREX2 is also called TREX. Note that, in view of Example 7(d)(e) in Section 2.2 and a relation
between g( j,q) and φ̃q in (41) [38, in Section 4.3.2]:

(∀(η ,y) ∈ R×RN) g( j,q)(η ,y) = τ(x>j z,z)
φ̃q (η ,y) = φ̃q

(
η −x>j z,y− z

)
, (136)

each convex subproblem in (133) is an instance of Problem (1). For the subproblem (133), the Douglas-
Rachford splitting method (see Proposition 9 in Section 2.3) was successfully applied in [38]. For complete-
ness, we reproduce this result in the style of (19–21) followed by application of Fact 6 (in Section 2.2) to the
characterization (66). Suppose that for (133) the qualification condition (see (32))

0 ∈ ri(dom(g( j,q))−M j dom(‖ · ‖1)) (137)

holds17. Then, by using[
M̌ j : Rp ×RN+1 → RN+1 : (b,c) 7→ M jb− c,
QRp : Rp ×RN+1 → Rp : (b,c) 7→ b,

we obtain

S( j,q) = QRp ◦PN (M̌ j)

(
Fix
(

T( j,q)
DRSI

))
(138)

(which is a specialization of (66) for (133), see Figure 3), where

T( j,q)
DRSI

: Rp ×RN+1 → Rp ×RN+1 : (b,c) 7→ (bT ,cT ) (139)

is the DRS operator of Type-I (c.f., (57) and (60)) specialized for (133) and is defined byp = b−M∗
j(I+M jM∗

j)
−1(M jb− c)

(b1/2,c1/2) = (2p−b,2M jp− c))
(bT ,cT ) = (2prox‖·‖1

(b1/2)−b1/2,2proxg( j,q)
(c1/2)− c1/2),

or equivalently by

T( j,q)
DRSI

:= (2proxF( j,q)
−I)◦ (2PN (M̌ j)

− I)

17 In [38], the qualification condition (137) seems to be assumed implicitly. If we assume additionally that X ∈ RN×p has no zero
column, it is automatically guaranteed as will be shown in Lemma 27 in Section 5.2.
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where QRp : Rp ⇥ RN+1 ! Rp : (b, c) 7! b

Rp ⇥ RN+1

Rp

S(j,q) := argmin
b2Rp

⇥
g(j,q)(Mjb) + kbk1

⇤
= QRp � PN (M̌j)

⇣
Fix

⇣
T(j,q)

DRSI

⌘⌘

argmin
(b,c)2Rp⇥RN+1

[F(j,q)(b, c) + ◆N (M̌j)
(b, c)] = PN (M̌j)

⇣
Fix

⇣
T(j,q)

DRSI

⌘⌘

Fig. 3 Illustration of the fixed point characterization of S( j,q) in (133) via the Douglas-Rachford splitting operator T( j,q)
DRSI

in (139).

with F( j,q) : Rp ×RN+1 → (−∞,∞] : (b,c) 7→ g( j,q)(c)+ ‖b‖1. Note that T( j,q)
DRSI

can be computed efficiently if
(I+M jM∗

j)
−1 is available as a computational tool.

The above characterization (138) and Fact 6 (see Section 2.2) lead to the following algorithmic solution of
(133).

Fact 26 (Douglas-Rachford Splitting Method for Subproblems of Generalized TREX) Under the qualifi-
cation condition (137) for S( j,q) in (133), the sequence (bn,cn)n∈N ⊂ Rp ×RN+1 generated, with (αn)n∈N ⊂
[0,1] satisfying ∑n∈N αn(1−αn) = ∞ in Fact 6 (see Section 2.2) and (b0,c0) ∈ Rp ×RN+1, by

(bn+1,cn+1) = (1−αn)(bn,cn)+αnT( j,q)
DRSI

(bn,cn) (140)

converges to a point (b⋆,c⋆) in Fix
(

T( j,q)
DRSI

)
as well as the sequence (QRp ◦PN (M̌ j)

(bn,cn))n∈N converges to

QRp ◦PN (M̌ j)
(b⋆,c⋆) ∈ S( j,q), where

QRp ◦PN (M̌ j)
: Rp ×RN+1 → Rp : (b,c) 7→ b−M∗

j(I+M jM∗
j)
−1(M jb− c).

Note that the sequence (QRp ◦PN (M̌ j)
(bn,cn))n∈N can be generated efficiently by (140) if (I+M jM∗

j)
−1 is

available as a computational tool.

5.2 Enhancement of Generalized TREX Solutions with Hierarchical Optimization

Along Scenario 2 in Section 1, suppose that we found newly an effective criterion Ψ ∈ Γ0(Rp) whose gradient
is Lipschitzian over Rp and we hope to select a most desirable vector, in the sense of Ψ , from the solution set
STREXq in (132). This task is formulated as a hierarchical nonconvex optimization problem (see (131), (134),
and (135) for Q̂Rp , g( j,q), and M j):
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minimize Ψ(b⋆) (141)

subject to b⋆ ∈ STREXq = Q̂Rp

[
argmin

(b, j)∈Rp×{1,2,...,2p}
g( j,q)(M jb)+‖b‖1

]

whose solution bHTREXq is given, by passing through 2p (hierarchical convex optimization) subproblems, as

b( j⋆⋆)
HTREXq

, where

b( j)
HTREXq

∈ Ω ( j,q)
DRSI

:= argmin
b⋆∈S( j,q)

Ψ(b⋆),

S( j,q) = argmin
b∈Rp

[
g( j,q)(M jb)+‖b‖1

]
( j = 1,2, . . . ,2p) [in (133)];

J⋆ := argmin
j∈{1,2,...,2p}

[
g( j,q)(M jb

( j)
HTREXq

)+‖b( j)
HTREXq

‖1

]
;

j⋆⋆ ∈ argmin
j⋆∈J⋆

Ψ(b( j⋆)
HTREXq

).

(142)

Note that the coercivity of ‖ ·‖1 and the nonnegativity of g( j,q) ensure that S( j,q) is nonempty and bounded (see

Fact 2(c) in Section 2.1), which also guarantees Ω ( j,q)
DRSI

= argmin(ιS( j,q)
+Ψ)(Rp) 6=∅ ( j = 1,2, . . . ,2p) by the

classical Weierstrass theorem.
In the following, we focus on how to compute the solution b( j)

HTREXq
( j = 1,2, . . . ,2p) in (142) by a proposed

strategy in Section 3. We assume that the design matrix X ∈ RN×p in (126) has no zero column, to guarantee
the qualification condition (137) for S( j,q) in (133) for each j = 1,2, . . . ,2p.

Lemma 27 Suppose that the design matrix X ∈ RN×p has no zero column. Then the qualification condition
(137) for S( j,q) in (133) is guaranteed automatically for each j = 1,2, . . . ,2p.

(The proof of Lemma 27 is given in Appendix G).

Theorem 28 (Algorithmic Solution to Hierarchical TREXq). Suppose that X has no zero column and
Ψ ∈ Γ0(Rp) is Gâteaux differentiable with Lipschitzian gradient ∇Ψ over Rp. Then, for T( j,q)

DRSI
in (139)

( j = 1,2, . . . ,2p),

(a) Fix(T( j,q)
DRSI

) is bounded;

(b) T( j,q)
DRSI

can be plugged into the HSDM (54), with any α ∈ (0,1) and (λn+1)n∈N ∈ ℓ2
+ \ ℓ1

+, as
(bn+1/2,cn+1/2) = (1−α)(bn,cn)+αT( j,q)

DRSI
(bn,cn)

b⋆
n+1 = bn+1/2 −M∗

j(I+M jM∗
j)
−1(M jbn+1/2 − cn+1/2)

bn+1 = bn+1/2 −λn+1(I−M∗
j(I+M jM∗

j)
−1M j)◦∇Ψ(b⋆

n+1)

cn+1 = cn+1/2 −λn+1((I+M jM∗
j)
−1M j)◦∇Ψ(b⋆

n+1).

(143)

The algorithm (143) generates, for any (b0,c0) ∈ Rp ×RN+1, a sequence (b⋆
n+1)n∈N ⊂ Rp which satisfies

lim
n→∞

d
Ω ( j,q)

DRSI

(b⋆
n) = 0,

where Ω ( j,q)
DRSI

6=∅ is defined in (142).

Remark 29 (Idea Behind Derivation of Theorem 28)

(a) Recall that T( j,q)
DRSI

is a DRS operator of Type-I (see (139) and Theorem 15 in Section 3.1). By applying
Corollary 24(a) in Section 3.3 to Lemma 27, the boundedness of S( j,q) 6= ∅, and the boundedness of the
image of ∂‖ · ‖1 : Rp → [−1,1]p : b = (b1,b2, . . . ,bp) 7→

�p
i=1 ∂ | · |(bi), we deduce the relation:
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−(M>

j )
−1(∂‖ · ‖1(S( j,q)))

]
∩∂g( j,q)(RN+1) is bounded (144)

⇒ Fix(T( j,q)
DRSI

) is bounded,

where (M>
j )

−1 : Rp → 2R
N+1

: b 7→ {c ∈ RN+1 | b = M>
j c} (see (135) for M j). Now, by ∂g( j,q)(RN+1) =

∂ φ̃q(RN+1) (due to (136)) and the supercoercivity of φq and φ∗
q (due to [9, Example 13.2 and Example

13.8]), for proving the boundedness of Fix(T( j,q)
DRSI

) from (144), it is sufficient to show the following claim:

Claim 28: Suppose that X has no zero column. Let S ⊂ Rp be bounded, and φ ∈ Γ0(RN) a supercoercive
function having supercoercive φ∗ ∈ Γ0(RN). Then (M>

j )
−1(S)∩∂ φ̃(RN+1) is bounded.

Note that Claim 28 is the main step in the proof of Theorem 28.
(b) We have already confirmed the qualification condition (137) in Lemma 27, S( j,q) 6= ∅, and Ω ( j,q)

DRSI
6= ∅

( j = 1,2, . . . ,2p) (see the short remark just after (142)). Therefore, application of Theorem 15 (in Section
3.1) to the subproblems to compute b( j)

HTREXq
( j = 1,2, . . . ,2p) in (142) guarantees the statement of Theorem

28(b).

(The proof of Theorem 28 is given in Appendix H).

5.3 Numerical Experiment: Hierarchical TREX2

We demonstrate that the proposed estimator bHTREX2 , i.e., Hierarchical TREX2 in (141) (see Section 5.2) can
enhance further the estimation accuracy achieved by bTREX2 in (132) if we can exploit another new criterion
Ψ : Rp →R for promoting characteristics, of btru, which is not utilized in TREX2. Consider the situation where
we like to estimate unknown vector

btru =
1
√

p
(0,0,0,1,1,1,0, . . . ,0)> ∈ Rp

from the noisy observation z ∈ RN in (126). We suppose to know that btru is not only sparse but also fairly flat.
Here, the fairly flatness of btru means that the energy of oscillations (i.e., the sum of the squared gaps between
the adjacent components) of btru is small, which is supposed to be our additional knowledge not utilized in the
TREX2 and Lasso estimators. If we have such prior knowledge, suppression of

Ψ : Rp → R : b 7→ 1
2
‖Db‖2, with D :=


−1 1 0 0 0 0
0 −1 1 0 0 0

. . . . . .
0 0 0 −1 1 0
0 0 0 0 −1 1

 ∈ R(p−1)×p, (145)

is expected to be effective for estimation of btru becauseΨ can distinguish btru from b̃ := 1√
p (0,1,0,0,1,1,0, . . . ,0)

> ∈
Rp of the same sparsity as btru (i.e., ‖btru‖0 = ‖b̃‖0 and ‖btru‖1 = ‖b̃‖1) by Ψ(btru) <Ψ(b̃). Now, our new
goal for enhancement of TREX2 is to minimize Ψ while keeping the optimality of the TREX2 in the sense
of (132) for q = 2 (see Scenario 2 in Section 1). This goal is achieved by solving the hierarchical nonconvex
optimization (141) for q = 2.

In our experiments, the design matrix X ∈ RN×p in (126) is given to satisfy X:2 = X:3 = X:4 with a sample
of zero-mean Gaussian random variable followed by normalization to satisfy ‖X: j‖ =

√
N ( j = 1, . . . , p). The

additive noise e ∈ RN in (126) is drawn from the unit white Gaussian distribution. We tested the performances
of the estimators under (SNR) = 10log

(
‖Xbtru‖2

‖σe‖2

)
∈ [10,1000]∪{+∞}, where σ ∈ R is adjusted to obtain a
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(a) Comparison of TREX2 and HTREX2 in the process of convergences under the noise e = 0.

(b) Estimation accuracy achieved by TREX2 and HTREX2 for various SNR.

Fig. 4 Transient performances in an over-determined case; Criteria “Function Value”, “Distance” are given in (146) and (SNR) =

10log
(
‖Xbtru‖2

‖σe‖2

)
[dB].

specific SNR. Note that, in this setting,
{

b ∈ Rp | Xb = Xbtru and ‖b‖1 = ‖btru‖1
}

is apparently an infinite set
containing both btru and b̃.

We compared the performances of bTREX2 in (132) (β = 1/2) and bHTREX2 in (141) employing Ψ in (145).
To approximate iteratively b( j)

TREX2
( j = 1,2, . . . ,2p) for (133) and b( j)

HTREX2
( j = 1,2, . . . ,2p) for (142), we used

respectively TREX2 (140) (Fact 26 with αn = 1.95 (n ∈ N)) and the proposed algorithm (143) (HTREX2 with
α = 1.95 and λn =

1
n for n ∈ N). As performance measures, we used, in Figure 4 and Figure 5,[

Function Value (see (141)) min j=1,...,2p(g( j,2)(M jbn)+‖bn‖1),
Distance ‖bn −btru‖. (146)

The experiments were performed both in an over-determined case (N = 30 and p = 20) in Figure 4 and an
under-determined case (N = 20 and p = 30) in Figure 5.

Figure 4(a) and 5(a) illustrate the process of convergences of TREX2 and HTREX2 in the absence of noise,
i.e., e = 0 ∈ RN . From these figures, we observe that (i) Function Values of TREX2 and HTREX2 converge to
the same level, and that (ii) Distance (to btru) of HTREX2 converges to a lower level than that of TREX2. Figure
4(b) and 5(b) summarize the behavior of Distance (to btru), against various SNR, by TREX2 and HTREX2 after
10000 iterations. For all the SNR, HTREX2 seems to succeed in improving the performance of TREX2.
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(a) Comparison of TREX2 and HTREX2 in the process of convergences under the noise e = 0.

(b) Estimation accuracy achieved by TREX2 and HTREX2 for various SNR.

Fig. 5 Transient performances in an under-determined case; Criteria “Function Value”, “Distance” are given in (146) and (SNR) =

10log
(
‖Xbtru‖2

‖σe‖2

)
[dB].

6 Concluding Remarks

In this paper, we have demonstrated how the modern proximal splitting operators can be plugged nicely into the
hybrid steepest descent method (HSDM) for their applications to the hierarchical convex optimization problems
which require further strategic selection of a most desirable vector from the set of all solutions of the standard
convex optimization. For simplicity as well as for broad applicability, we have chosen to cast our target in the
iterative approximation of a viscosity solution of the standard convex optimization problem, where the 1st stage
cost function is given as a superposition of multiple nonsmooth convex functions, involving linear operators,
while its viscosity solution is a minimizer of the 2nd stage cost function which is Gâteaux differentiable con-
vex function with Lipschitzian gradient. The key ideas for the successful collaboration between the proximal
splitting operators and the HSDM are not only in (i) the previously known expressions of the solution set of
the standard convex optimization problem as the fixed point set of computable nonexpansive operators but also
in (ii) linear relations build strategically between the solution set and the fixed point set. Fortunately, we have
shown that such key ideas can be achieved by extending carefully the strategies behind the Douglas-Rachford
splitting operators as well as the LAL operators defined in certain product Hilbert spaces. We have also pre-
sented applications of the proposed algorithmic strategies to certain unexplored hierarchical enhancements of
the support vector machine and the Lasso estimator.
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Appendices

A: Proof of Proposition 9(a)

Fact 5(i)⇔(ii) in Section 2.1 yields

(42–44) ⇔ (∃ν⋆ ∈ K ) ν⋆ ∈ ∂ f (x⋆) and −ν⋆ ∈ ∂g(x⋆)

⇔ 0 ∈ ∂ f (x⋆)+∂g(x⋆).

The remaining follows from the proof in [40, Proposition 18]. ut

B: Proof of Proposition 10(a)(d)

(a) From (47) and (48), there exists (x⋆,ν⋆) ∈ SpLAL ×SdLAL. Fact 5(i)⇔(ii) in Section 2.1 yields the equiva-
lence

(x⋆,ν⋆) ∈ SpLAL ×SdLAL and (49)
⇔ A∗ν⋆ ∈ ∂ f (x⋆) and −ν⋆ ∈ ∂ι{0}(Ax⋆)

⇔ A∗ν⋆ ∈ ∂ f (x⋆) and Ax⋆ = 0 (A.1)
⇔ x⋆ = prox f (x⋆−A∗Ax⋆+A∗ν⋆) and ν⋆ = ν⋆−Ax⋆

⇔ (x⋆,ν⋆) ∈ Fix(TLAL). (A.2)

ut
(d) Choose arbitrarily (x̄, ν̄) ∈ Fix(TLAL), i.e.,

(x̄, ν̄) = TLAL(x̄, ν̄) =
(
prox f (x̄−A∗Ax̄+A∗ν̄), ν̄ −Ax̄

)
.

Let (xn,νn)n∈N ⊂ X ×K be generated, with any (x0,ν0) ∈ X ×K , by

(xn+1,νn+1) = TLAL(xn,νn) =
(
prox f (xn −A∗Axn +A∗νn),νn −Axn+1

)
. (A.3)

Then [150, (B.3)] yields
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0 ≤‖xn − x̄‖2
X −‖xn+1 − x̄‖2

X −‖(xn+1 − xn)− (x̄− x̄)‖2
X

+‖Axn+1 −Ax̄− (Axn −Ax̄)‖2
K −‖Axn −Ax̄‖2

K

−‖Axn+1 −Ax̄+ ν̄ −νn‖2
K +‖ν̄ −νn‖2

K

=‖xn − x̄‖2
X −‖xn+1 − x̄‖2

X −‖xn+1 − xn‖2
X

+‖Axn+1 −Axn‖2
K −‖Axn‖2

K −‖ν̄ −νn+1‖2
K +‖ν̄ −νn‖2

K

≤(‖xn − x̄‖2
X +‖νn − ν̄‖2

K )− (‖xn+1 − x̄‖2
X +‖νn+1 − ν̄‖2

K )

+(‖A‖2
op −1)‖xn+1 − xn‖2

X −‖Axn‖2
K . (A.4)

(A.4) and ‖A‖op < 1 imply that (‖xn− x̄‖2
X +‖νn− ν̄‖2

K )n∈N decreases monotonically, i.e., (xn,νn)n∈N is Fejér
monotone with respect to Fix(TLAL), and (‖xn − x̄‖2

X + ‖νn − ν̄‖2
K )n∈N converges to some c ≥ 0. From this

observation, we have

N

∑
n=0

[
(1−‖A‖2

op)‖xn+1 − xn‖2
X +‖Axn‖2

K

]
≤

N

∑
n=0

[
(‖xn − x̄‖2

X +‖νn − ν̄‖2
K )− (‖xn+1 − x̄‖2

X +‖νn+1 − ν̄‖2
K )
]

= (‖x0 − x̄‖2
X +‖ν0 − ν̄‖2

K )− (‖xN+1 − x̄‖2
X +‖νN+1 − ν̄‖2

K )

→ (‖x0 − x̄‖2
X +‖ν0 − ν̄‖2

K )− c < ∞ (N → ∞)

and thus

lim
n→∞

‖xn+1 − xn‖X = 0 and lim
n→∞

‖Axn‖K = 0. (A.5)

By [51, Theorem 9.12], the bounded sequence of (xn,νn)n∈N has some subsequence (xn j ,νn j) j∈N which con-
verges weakly to a some point, say (x⋆,ν⋆), in the Hilbert space X ×K . Therefore, by applying [9, Theorem
9.1(iii)⇔(i)] to f ∈ Γ0(X ), we have

f (x⋆)≤ liminf
j→∞

f (xn j) (A.6)

and, by the Cauchy-Schwarz inequality and (A.5),

‖Ax⋆‖2
K = 〈Ax⋆−Axn j ,Ax⋆〉K + 〈Axn j ,Ax⋆〉K

≤ 〈x⋆− xn j ,A
∗Ax⋆〉X +‖Axn j‖K ‖Ax⋆‖K → 0 ( j → ∞),

which implies Ax⋆ = 0.
Meanwhile, by (A.3), we have

xn j = prox f (xn j−1 −A∗Axn j−1 +A∗νn) = (I+∂ f )−1(xn j−1 −A∗Axn j−1 +A∗νn j−1)

⇔ xn j−1 − xn j −A∗Axn j−1 +A∗νn j−1 ∈ ∂ f (xn j)

⇔ (∀x ∈ X ) f (xn j)+ 〈xn j−1 − xn j −A∗Axn j−1 +A∗νn j−1,x− xn j〉X ≤ f (x), (A.7)

where the inner product therein satisfies

lim
j→∞

〈xn j−1 − xn j −A∗Axn j−1 +A∗νn j−1,x− xn j〉X = 〈A∗ν⋆,x− x⋆〉X , (A.8)

which is verified by Ax⋆ = 0, the triangle inequality, the Cauchy-Schwarz inequality, and (A.5), as follows:
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(∀x ∈ X )

|〈xn j−1 − xn j −A∗Axn j−1 +A∗νn j−1,x− xn j〉X −〈A∗ν⋆,x− x⋆〉X |
= |〈xn j−1 − xn j ,x− xn j〉X −〈Axn j−1,A(x− xn j)〉K

+ 〈νn j−1,A(x− xn j)〉K −〈ν⋆,Ax〉K |
= |〈xn j−1 − xn j ,x− xn j〉X −〈Axn j−1,A(x− xn j)〉K

+ 〈νn j−1,−Axn j〉K −〈νn j −νn j−1,Ax〉K −〈ν⋆−νn j ,Ax〉K |
≤ (‖xn j−1 − xn j‖X ‖x− xn j‖X +‖Axn j−1‖K ‖A(x− xn j)‖K

+‖νn j−1‖K ‖−Axn j‖K +‖Axn j‖K ‖Ax‖K + |〈ν⋆−νn j ,Ax〉K |)
→0 ( j → ∞).

Now, by (A.7), (A.6) and (A.8), we have for any x ∈ X

f (x)≥ f (x⋆)+ liminf
j→∞

〈xn j−1 − xn j −A∗Axn j−1 +A∗νn j−1,x− xn j〉X

= f (x⋆)+ lim
j→∞

〈xn j−1 − xn j −A∗Axn j−1 +A∗νn j−1,x− xn j〉X

= f (x⋆)+ 〈A∗ν⋆,x− x⋆〉X ,

which implies

A∗ν⋆ ∈ ∂ f (x⋆). (A.9)

By recalling (A.1)⇔(A.2), (A.9) and Ax⋆ = 0 prove (x⋆,ν⋆) ∈ Fix(TLAL). The above discussion implies that
every weak sequential cluster point (see Footnote 7 in Section 2.2) of (xn,νn)n∈N, which is Fejér monotone with
respect to Fix(TLAL), belongs to Fix(TLAL). Therefore, [9, Theorem 5.5] guarantees that (xn,νn)n∈N converges
weakly to a point in Fix(TLAL). ut

C: Proof of Theorem 15

Now by recalling Proposition 9 in Section 2.3 and Remark 16 in Section 3.1, it is sufficient to prove Claim
15. Let x⋆ ∈ Sp 6= ∅. Then the Fermat’s rule, Fact 4(b) (applicable due to the qualification condition (32)) in
Section 2.1, Ǎ∗ : K → X ×K : ν 7→ (A∗ν ,−ν) for Ǎ in (63), the property of ι{0} in (28), the straightforward
calculations, and Fact 5(ii)⇔(i) (in Section 2.1) yield
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x⋆ ∈ Sp ⇔ 0 ∈ ∂ ( f +g◦A)(x⋆) = ∂ f (x⋆)+A∗∂g(Ax⋆)

⇔ y⋆ = Ax⋆ and 0 ∈ ∂ f (x⋆)+A∗∂g(y⋆)

⇔ (∃ν⋆ ∈ K ) y⋆ = Ax⋆ and
{

A∗ν⋆ ∈ ∂ f (x⋆)
−ν⋆ ∈ ∂g(y⋆)

⇔ (∃ν⋆ ∈ K ) Ǎ(x⋆,y⋆) = 0 and Ǎ∗ν⋆ ∈ ∂F(x⋆,y⋆)

⇔ (∃ν⋆ ∈ K ) −ν⋆ ∈ ∂ι{0}(Ǎ(x⋆,y⋆)) and Ǎ∗ν⋆ ∈ ∂F(x⋆,y⋆)

⇒ (∃ν⋆ ∈ K ) − Ǎ∗ν⋆ ∈ Ǎ∗∂ι{0}(Ǎ(x⋆,y⋆)) and Ǎ∗ν⋆ ∈ ∂F(x⋆,y⋆)

⇒ (∃ν⋆ ∈ K ) − Ǎ∗ν⋆ ∈ ∂ (ι{0} ◦ Ǎ)(x⋆,y⋆) and Ǎ∗ν⋆ ∈ ∂F(x⋆,y⋆)

⇔ (∃ν⋆ ∈ K ) − Ǎ∗ν⋆ ∈ ∂ιN (Ǎ)(x⋆,y⋆) and Ǎ∗ν⋆ ∈ ∂F(x⋆,y⋆)

⇔ (∃ν⋆ ∈ K )
(x⋆,y⋆) ∈ argmin(F + ιN (Ǎ))(X ×K )

Ǎ∗ν⋆ ∈ argmin(F∗+ ι∗
N (Ǎ)

◦ (−I))(X ×K )

min(F + ιN (Ǎ))(X ×K ) =−min(F∗+ ι∗
N (Ǎ)

◦ (−I))(X ×K ),

which confirms Claim 15. ut

D: Proof of Theorem 17

Now by recalling Proposition 9 in Section 2.3 and Remark 18 in Section 3.1, it is sufficient to prove (82) by
verifying Claim 17. We will use

A∗ ◦∂g◦A =
m

∑
i=1

A∗
i ◦∂gi ◦Ai =

m

∑
i=1

∂ (gi ◦Ai) (A.10)

which is verified by g =
⊕m

i=1 gi, Fact 4(c) (see Section 2.1), and ri(dom(g j)− ran(A j)) = ri(dom(g j)−R) =
R 3 0 ( j = 1,2, . . . ,m). Let x(m+1)

⋆ ∈ Sp 6= ∅. Then by using the Fermat’s rule, Fact 4(b) (applicable due to
(32)), (A.10), D in (81), and H in (80), we deduce the equivalence
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x(m+1)
⋆ ∈ Sp

⇔ 0 ∈ ∂ ( f +g◦A)(x(m+1)
⋆ ) = ∂ f (x(m+1)

⋆ )+A∗∂g(Ax(m+1)
⋆ )

= ∂ f (x(m+1)
⋆ )+

m

∑
i=1

∂ (gi ◦Ai)(x
(m+1)
⋆ )

⇔ ( j = 1, . . . ,m) x( j)
⋆ = x(m+1)

⋆ and 0 ∈ ∂ f (x(m+1)
⋆ )+

m

∑
i=1

∂ (gi ◦Ai)(x
(i)
⋆ )

⇔ (∃ν(1), . . . ,ν(m) ∈ X )( j = 1, . . . ,m)


x( j)
⋆ = x(m+1)

⋆

ν( j) ∈ ∂ (g j ◦A j)(x
( j)
⋆ )

−∑m
i=1 ν(i) ∈ ∂ f (x(m+1)

⋆ )

⇔ (∃ν(1), . . . ,ν(m) ∈ X )
(x(1)⋆ , . . . ,x(m+1)

⋆ ) ∈ D(
ν(1), . . . ,ν(m),−∑m

i=1 ν(i)
)
∈
[�m

j=1 ∂ (g j ◦A j)(x
( j)
⋆ )
]
×∂ f (x(m+1)

⋆ )

= ∂H(x(1)⋆ , . . . ,x(m+1)
⋆ ).

Then by −
(
ν(1), . . . ,ν(m),−∑m

i=1 ν(i)
)
∈ D⊥ = ∂ιD(x

(1)
⋆ , . . . ,x(m+1)

⋆ ) (see (27)) and by Fact 5(ii)⇔(i) in Section
2.1, we have

x(m+1)
⋆ ∈ Sp ⇔ (∃ν(1), . . . ,ν(m) ∈ X ){

−
(
ν(1), . . . ,ν(m),−∑m

i=1 ν(i)
)
∈ ∂ιD(x

(1)
⋆ , . . . ,x(m+1)

⋆ )(
ν(1), . . . ,ν(m),−∑m

i=1 ν(i)
)
∈ ∂H(x(1)⋆ , . . . ,x(m+1)

⋆ )

⇔ (∃ν(1), . . . ,ν(m) ∈ X ) (x(1)⋆ , . . . ,x(m+1)
⋆ ) ∈ argmin(H + ιD)(X m+1)(

ν(1), . . . ,ν(m),−∑m
i=1 ν(i)

)
∈ argmin(H∗+ ι∗D ◦ (−I))(X m+1)

min(H + ιD)(X m+1) =−min(H∗+ ι∗D ◦ (−I))(X m+1),

which confirms Claim 17. ut

E: Proof of Theorem 19

Now by recalling Proposition 10 in Section 2.3 and Remark 20 in Section 3.2, it is sufficient to prove Claim
19. Let x⋆ ∈ Sp 6= ∅. Then the Fermat’s rule, Fact 4(b) (applicable due to (32)) in Section 2.1, Ǎ∗ : K →
X ×K : ν 7→ (A∗ν ,−ν) for Ǎ in (63), the property of ι{0} in (28), the straightforward calculations, and Fact
5(ii)⇔(i) (in Section 2.1) yield
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x⋆ ∈ Sp ⇔ 0 ∈ ∂ ( f +g◦A)(x⋆) = ∂ f (x⋆)+A∗∂g(Ax⋆)

⇔ y⋆ = Ax⋆ and 0 ∈ ∂ f (x⋆)+A∗∂g(y⋆)

⇔ (∃ν⋆ ∈ K ) y⋆ = Ax⋆ and
{
uA∗ν⋆ ∈ ∂ f (x⋆)
−uν⋆ ∈ ∂g(y⋆)

⇔ (∃ν⋆ ∈ K ) (uǍ)(x⋆,y⋆) = 0 and (uǍ)∗ν⋆ ∈ ∂F(x⋆,y⋆)

⇔ (∃ν⋆ ∈ K ) −ν⋆ ∈ ∂ι{0}((uǍ)(x⋆,y⋆)) and (uǍ)∗ν⋆ ∈ ∂F(x⋆,y⋆)

⇔ (∃ν⋆ ∈ K )
(x⋆,y⋆) ∈ argmin (F + ι{0} ◦ (uǍ))(X ×K )

ν⋆ ∈ argmin(F∗ ◦ (uǍ)∗)(K )

min (F + ι{0} ◦ (uǍ))(X ×K ) =−min(F∗ ◦ (uǍ)∗)(K ),

which confirms Claim 19. ut

F: Proof of Theorem 23

(a) We have seen in (66) that, under the assumptions of Theorem 23(a), for any vector x⋆ ∈ X ,

x⋆ ∈ Sp[in (10)] if and only if (x⋆,y⋆) = PN (Ǎ)(ζ⋆) (A.11)

for some y⋆ ∈ X and some ζ⋆ ∈ Fix(TDRSI), where Ǎ : X ×K → K : (x,y) 7→ Ax− y (see (63)), N (Ǎ) =
{(x,Ax) ∈ X ×K | x ∈ X }, and TDRSI = (2proxF −I)◦ (2PN (Ǎ)− I) for F : X ×K → (−∞,∞] : (x,y) 7→
f (x)+g(y) (see (60) and (62)).

Choose ζ⋆ := (ζ x
⋆ ,ζ

y
⋆ ) ∈ Fix(TDRSI) arbitrarily and let z⋆ := (x⋆,y⋆) := PN (Ǎ)(ζ⋆). Then we have

ζ⋆ ∈ Fix(TDRSI) and PN (Ǎ)(ζ⋆) = z⋆
⇔ (2proxF −I)◦ (2PN (Ǎ)− I)(ζ⋆) = ζ⋆ and PN (Ǎ)(ζ⋆) = z⋆ (A.12)

⇒ (2proxF −I)(2z⋆−ζ⋆) = ζ⋆ ⇔ proxF(2z⋆−ζ⋆) = z⋆
⇔ (I+∂F)−1(2z⋆−ζ⋆) = z⋆ ⇔ 2z⋆−ζ⋆ ∈ z⋆+∂F(z⋆)
⇔ z⋆−ζ⋆ ∈ ∂F(z⋆) = ∂ f (x⋆)×∂g(y⋆) (A.13)
⇔ x⋆−ζ x

⋆ ∈ ∂ f (x⋆) and y⋆−ζ y
⋆ ∈ ∂g(y⋆). (A.14)

Meanwhile, we have

z⋆ = PN (Ǎ)(ζ⋆) ⇔ (∀z = (x,Ax) ∈ N (Ǎ)) 〈ζ⋆− z⋆,z〉X ×K = 0

⇔ (∀x ∈ X ) 〈ζ x
⋆ − x⋆,x〉X + 〈ζ y

⋆ − y⋆,Ax〉K = 0
⇔ (∀x ∈ X ) 〈(ζ x

⋆ − x⋆)+A∗(ζ y
⋆ − y⋆),x〉X = 0

⇔ A∗(ζ y
⋆ − y⋆) =−(ζ x

⋆ − x⋆). (A.15)

Equations (A.15) and (A.14) imply

ζ⋆ ∈ Fix(TDRSI) and PN (Ǎ)(ζ⋆) = z⋆

⇒ x⋆−ζ x
⋆ ∈ ∂ f (x⋆) and y⋆−ζ y

⋆ ∈ (−(A∗)−1(∂ f (x⋆)))∩∂g(y⋆)

⇒ ζ⋆= (ζ x
⋆ ,ζ y

⋆ )∈(x⋆,y⋆)−
(
∂ f (x⋆)× [(−(A∗)−1(∂ f (x⋆)))∩∂g(y⋆)]

)
. (A.16)
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Moreover, by noting that (A.11) ensures x⋆ ∈ Sp and y⋆ = Ax⋆, we have from (A.16)

ζ⋆ ∈ Fix(TDRSI) and (x⋆,Ax⋆) = PN (Ǎ)(ζ⋆)

⇒ ζ⋆ ∈ (x⋆,Ax⋆)−
(
∂ f (x⋆)× [(−(A∗)−1(∂ f (x⋆)))∩∂g(Ax⋆)]

)
⇒ ζ⋆ ∈

⋃
x′∈Sp

(x′,Ax′)−
⋃

x′′∈Sp

(
∂ f (x′′)× [(−(A∗)−1(∂ f (x′′)))∩∂g(Ax′′)]

)
Since ζ⋆ is chosen arbitrarily from Fix(TDRSI), we have

Fix(TDRSI)⊂
⋃

x′∈Sp

(x′,Ax′)−
⋃

x′′∈Sp

(
∂ f (x′′)× [(−(A∗)−1(∂ f (x′′)))∩∂g(Ax′′)]

)
,

from which Theorem 23(a) is confirmed.
(b) We have seen in (95) that, under the assumptions of Theorem 23(b), for any vector x⋆ ∈ X ,

x⋆ ∈ Sp[in (10)] if and only if (x⋆,y⋆,ν⋆) ∈ Fix(TLAL) (A.17)

for some (y⋆,ν⋆) ∈ K ×K , where

TLAL : X ×K ×K → X ×K ×K

:

x
y
ν

=

(
z
ν

)
7→

xT
yT
νT

=

(
zT
νT

)
=

(
proxF(z− (uǍ)∗(uǍ)z+(uǍ)∗ν)
ν −uǍzT

)

and (uǍ)∗ : K → X ×K : ν 7→ (uA∗ν ,−uν) (see (93) and (101)).
Choose (z⋆,ν⋆) ∈ Fix(TLAL) arbitrarily and denote z⋆ = (x⋆,y⋆) ∈ X ×K . By passing similar steps in

(A.2)⇔(A.1), we deduce

(z⋆,ν⋆) ∈ Fix(TLAL)

⇔ (uǍ)∗ν⋆ ∈ ∂F(z⋆) = ∂ f (x⋆)×∂g(y⋆) and uǍ(z⋆) = 0, (A.18)

and then, from (A.18), straightforward calculations yield

(x⋆,y⋆,ν⋆) ∈ Fix(TLAL)⇔

uA∗ν⋆ = A∗(uν⋆) ∈ ∂ f (x⋆)
−uν⋆ ∈ ∂g(y⋆)
Ax⋆ = y⋆


⇒ −uν⋆ ∈

[
−(A∗)−1(∂ f (x⋆))

]
∩∂g(Ax⋆) and Ax⋆ = y⋆

⇔ −u(x⋆,y⋆,ν⋆) ∈ {−u(x⋆,Ax⋆)}× [−(A∗)−1(∂ f (x⋆))∩∂g(Ax⋆)]. (A.19)

Moreover, from (A.19) and (A.17), we have

(x⋆,y⋆,ν⋆) ∈ Fix(TLAL)

⇒ −u(x⋆,y⋆,ν⋆) ∈
⋃

x∈Sp

{−u(x,Ax)}× [−(A∗)−1(∂ f (x))∩∂g(Ax)].

Since (x⋆,y⋆,ν⋆) is chosen arbitrarily from Fix(TLAL), we have

−uFix(TLAL)⊂
⋃

x∈Sp

{−u(x,Ax)}×
[
−(A∗)−1(∂ f (x))∩∂g(Ax)

]
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from which Theorem 23(b) is confirmed.
(c) We have seen in (83) that, under the assumptions of Theorem 23(c), for any vector x⋆ ∈ X ,

x⋆ ∈ Sp[in (10)] if and only if (x⋆,x⋆, . . . ,x⋆) = PD(X⋆) (A.20)

for some X⋆ ∈ Fix(TDRSII), where D = {(x(1), . . . ,x(m+1)) ∈ X m+1 | x(i) = x( j) (i, j = 1,2, . . . ,m + 1)}
(see (81)), H : X m+1 → (−∞,∞] : (x(1), . . . ,x(m+1)) 7→ ∑m

i=1 gi(Aix(i)) + f (x(m+1)) (see (80)), and TDRSII =
(2proxH −I) ◦ (2PD − I) (see (78)) [For the availability of proxH and PD as computational tools, see Remark
18(a)].

Choose X⋆ := (ζ (1)
⋆ , . . . ,ζ (m+1)

⋆ ) ∈ Fix(TDRSII) arbitrarily, and let X⋆ := (x⋆, . . . ,x⋆) = PD(X⋆). Then we
have

X⋆ ∈ Fix(TDRSII) and PD(X⋆) = X⋆

⇔ (2proxH −I)◦ (2PD − I)(X⋆) = X⋆ and PD(X⋆) = X⋆.

Now, by passing similar steps for (A.12)⇒(A.13), we deduce that

X⋆ ∈ Fix(TDRSII) and PD(X⋆) = X⋆

⇒ X⋆−X⋆ ∈ ∂H(X⋆) =

 m�
j=1

∂ (g j ◦A j)(x⋆)

×∂ f (x⋆)

⇔ ( j = 1,2, . . . ,m) x⋆−ζ ( j)
⋆ ∈ ∂ (g j ◦A j)(x⋆) and x⋆−ζ (m+1)

⋆ ∈ ∂ f (x⋆)

⇔ ( j = 1,2, . . . ,m) x⋆−ζ (i)
⋆ ∈ A∗

j∂g j(A jx⋆) and x⋆−ζ (m+1)
⋆ ∈ ∂ f (x⋆), (A.21)

where the last equivalence follows from Fact 4(c) (applicable due to ri(dom(g j)−ran(A j))= ri(dom(g j)−R)=
R 3 0). Meanwhile, we have

X⋆ = PD(X⋆) ⇔ x⋆ =
1

m+1

m+1

∑
i=1

ζ (i)
⋆ ⇔ x⋆−ζ (m+1)

⋆ =−
m

∑
i=1

(x⋆−ζ (i)
⋆ ). (A.22)

Equations (A.22) and (A.21) imply

X⋆ ∈ Fix(TDRSII) and PD(X⋆) = X⋆

⇒

{
( j = 1,2, . . . ,m) x⋆−ζ ( j)

⋆ ∈ A∗
j∂g j(A jx⋆)

x⋆−ζ (m+1)
⋆ ∈ ∂ f (x⋆)∩ [−∑m

i=1 A∗
i ∂gi(Aix⋆)]

⇒ X⋆−X⋆∈

 m�
j=1

A∗
j∂g j(A jx⋆)

×[∂ f (x⋆)∩

(
−

m

∑
i=1

A∗
i ∂gi(Aix⋆)

)]
. (A.23)

Moreover, by noting that (A.20) ensures x⋆ ∈ Sp, we have from (A.23)

X⋆ ∈ Fix(TDRSII) and PD(X⋆) = X⋆ = (x⋆, . . . ,x⋆)

⇒ X⋆ ∈ S m+1
p −

⋃
x∈Sp

 m�
j=1

A∗
j∂g j(A jx)

×[∂ f (x)∩

(
−

m

∑
i=1

A∗
i ∂gi(Aix)

)] .

Since X⋆ is chosen arbitrarily from Fix(TDRSII), we have
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Fix(TDRSII)⊂ S m+1
p −

⋃
x∈Sp

 m�
j=1

A∗
j∂g j(A jx)

×[∂ f (x)∩

(
−

m

∑
i=1

A∗
i ∂gi(Aix)

)] ,

from which Theorem 23(c) is confirmed. ut

G: Proof of Lemma 27

Obviously, we have from (134)

( j = 1,2, . . . ,2p) dom(g( j,q))⊃ {η ∈ R | η > x>j z}×RN . (A.24)

By recalling 0 6= x j ∈ RN in (129) and M j ∈ R(N+1)×p in (135), we have

( j = 1,2, . . . ,2p)

‖X>x j‖ ≥ ‖x j‖2 > 0

t(‖X>x j‖)−2M jX>x j =

(
t

t XX>x j
‖X>x j‖2

)
(∀t ∈ R),

and therefore

( j = 1,2, . . . ,2p) M j dom(‖ · ‖1) = M j(Rp)⊃ span

(
1

XX>x j
‖X>x j‖2

)
. (A.25)

To prove dom(g( j,q))−M j dom(‖ · ‖1) = R×RN , choose arbitrarily (η ,y) ∈ R×RN . Then (A.24) and (A.25)
guarantee(

η
y

)
=

(
x>j z+1

y+(x>j z+1−η)
XX>x j
‖X>x j‖2

)
−

(
x>j z+1−η

(x>j z+1−η)
XX>x j
‖X>x j‖2

)

∈ {η̃ ∈ R | η̃ > x>j z}×RN − span

(
1

XX>x j
‖X>x j‖2

)
⊂ dom(g( j,q))−M j dom(‖ · ‖1),

implying thus

ri(dom(g( j,q))−M j dom(‖ · ‖1)) = ri(R×RN) = R×RN 3 0. (A.26)

ut

H: Proof of Theorem 28

By recalling Remark 29 in Section 5.2, it is sufficient to prove Claim 28, for which we use the following
inequality: for each j = 1,2, . . . ,2p,

(∀(η ,y) ∈ R×RN)

∥∥∥∥M>
j

(
η
y

)∥∥∥∥≥ ∣∣η‖x j‖2 + 〈x j,y〉
∣∣ , (A.27)
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where x j ∈ RN in (129) and M j ∈ R(N+1)×p in (135). Equation (A.27) is confirmed by

( j = 1,2, . . . ,2p)(∀(η ,y) ∈ R×RN) M>
j

(
η
y

)
= ηX>x j +X>y

and {[
ηX>x j +X>y

]
j = η‖x j‖2 + 〈x j,y〉 if j ∈ {1,2, . . . , p}[

ηX>x j +X>y
]

j−p =−η‖x j‖2 −〈x j,y〉 if j ∈ {p+1, p+2, . . . ,2p}.

Let US := sup{‖b‖ | b ∈ S}(< ∞). By supercoercivity of φ and Example 3, the subdifferential of its per-
spective φ̃ at each (η ,y) ∈ R×RN can be expressed as (25), and thus, to prove Claim 28, it is sufficient to
show

(i) (M>
j )

−1(S)∩∂ φ̃(R++×RN) is bounded;

(ii) (M>
j )

−1(S)∩∂ φ̃(0,0) is bounded.

Proof of (i) Choose (η ,y) ∈ R++×RN arbitrarily. Then, from (25), every c(η ,y) ∈ (M>
j )

−1(S)∩ ∂ φ̃(η ,y) ∈
R×RN can be expressed with some u ∈ ∂φ(y/η) as

c(η ,y) = (φ(y/η)−〈y/η ,u〉,u) = (−φ∗(u),u), (A.28)

where the last equality follows from φ(y/η)+φ∗(u) = 〈y/η ,u〉 due to the Fenchel-Young identity (23). By
M>

j c(η ,y) ∈ S and by applying the inequality (A.27) to (A.28), we have

US ≥ ‖M>
j c(η ,y)‖=

∥∥∥∥M>
j

(
−φ∗(u)

u

)∥∥∥∥≥ ∣∣(−φ∗(u))‖x j‖2 +
〈
x j,u

〉∣∣
= |ϒ (u)| ≥ϒ+(u), (A.29)

where ϒ : RN →R : v 7→ φ∗(v)‖x j‖2−
〈
x j,v

〉
and ϒ+ : RN →R : v 7→ max{ϒ (v),0} are coercive convex func-

tions (see Section 2.1) and independent from the choice of (η ,y). The coercivity of ϒ+ ensures the existence of
an open ball B(0,Û(i)) of radius Û(i) > 0 such that lev≤US ϒ+ := {v ∈ RN |ϒ+(v) ≤ US} ⊂ B(0,Û(i)), and thus
(A.29) implies

‖u‖ ≤ Û(i). (A.30)

Moreover, by x j 6= 0, the triangle inequality, the Cauchy-Schwarz inequality, (A.29), and (A.30), we have

|φ∗(u)|=

∣∣∣∣∣ ϒ (u)
‖x j‖2 +

〈
x j,u

〉
‖x j‖2

∣∣∣∣∣≤
∣∣∣∣ ϒ (u)
‖x j‖2

∣∣∣∣+
∣∣∣∣∣
〈
x j,u

〉
‖x j‖2

∣∣∣∣∣
≤
∣∣∣∣ ϒ (u)
‖x j‖2

∣∣∣∣+ ‖u‖
‖x j‖

≤ US

‖x j‖2 +
Û(i)

‖x j‖
=: U(i),

which yields c(η ,y) = (−φ∗(u),u) ∈ [−U(i),U(i)]×B(0,Û(i)). Since (η ,y) ∈ R++ ×RN is chosen arbitrarily
and c(η ,y) ∈ (M>

j )
−1(S)∩∂ φ̃(η ,y) is also chosen arbitrarily, we have

(M>
j )

−1(S)∩∂ φ̃(R++×RN)⊂ [−U(i),U(i)]×B(0,Û(i)),

which confirms the statement (i).
Proof of (ii) By introducing
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B :=
{

v ∈ RN
∣∣∣∣ ∣∣∣∣〈 2

‖x j‖2 x j,v
〉∣∣∣∣> |φ∗(v)|

}
, (A.31)

we can decompose the set (M>
j )

−1(S)∩∂ φ̃(0,0) into

(M>
j )

−1(S)∩∂ φ̃(0,0)∩ (R×B) and (M>
j )

−1(S)∩∂ φ̃(0,0)∩ (R×Bc). (A.32)

In the following, we show the boundedness of each set in (A.32).
First, we show the boundedness of B by contradiction. Suppose that B 6⊂ B(0,r) for all r > 0. Then there

exists a sequence (uk)k∈N ⊂ RN such that

(∀k ∈ N)
2

‖x j‖
≥
∣∣∣∣〈 2

‖x j‖2 x j,
uk

‖uk‖

〉∣∣∣∣> |φ∗(uk)|
‖uk‖

and ‖uk‖ ≥ k,

which contradicts the supercoercivity of φ∗, implying thus the existence of r∗ > 0 such that B⊂ B(0,r∗).
Next, we show the boundedness of the former set in (A.32). Choose arbitrarily

(µ,u) ∈ (M>
j )

−1(S)∩∂ φ̃(0,0)∩ (R×B).

By x j 6= 0, M>
j (µ,u>)> ∈ S ⊂ B(0,US), the inequality (A.27), the triangle inequality, the Cauchy-Schwarz

inequality, and u ∈B⊂ B(0,r∗), we have

US

‖x j‖2 ≥ 1
‖x j‖2

∥∥∥∥M>
j

(
µ
u

)∥∥∥∥≥ 1
‖x j‖2 |µ‖x j‖2 + 〈x j,u〉|

≥ |µ|−
∣∣∣∣〈 x j

‖x j‖2 ,u
〉∣∣∣∣≥ |µ|− ‖u‖

‖x j‖
≥ |µ|− r∗

‖x j‖

which yields

Û(iia) :=
US

‖x j‖2 +
r∗

‖x j‖
≥ |µ|.

Therefore, we have (µ,u)∈ [−Û(iia),Û(iia)]×B(0,r⋆). Since (µ,u)∈ (M>
j )

−1(S)∩∂ φ̃(0,0)∩(R×B) is chosen
arbitrarily, we have

(M>
j )

−1(S)∩∂ φ̃(0,0)∩ (R×B)⊂ [−Û(iia),Û(iia)]×B(0,r⋆). (A.33)

Finally, we show the boundedness of the latter set in (A.32). Let

(µ,u) ∈ (M>
j )

−1(S)∩∂ φ̃(0,0)∩ (R×Bc). (A.34)

From (25), we have

∂ φ̃(0,0) = {(µ ′,u′) ∈ R×RN | µ ′+φ∗(u′)≤ 0}. (A.35)

Note that coercivity of φ∗ (⇒∃minφ∗(RN) ∈ R, see Fact 2) and (A.35) yield φ∗(u) ∈ [minφ∗(RN),−µ] and
thus

|φ∗(u)| ≤ max{|minφ∗(RN)|, |µ|} ≤ |minφ∗(RN)|+ |µ|. (A.36)

By x j 6= 0, M>
j (µ,u>)> ∈ S ⊂ B(0,US) (see (A.34)), the inequality (A.27), the triangle inequality, u ∈Bc (see

(A.34) and (A.31)), and (A.36), we have
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2
‖x j‖2 US ≥

2
‖x j‖2

∥∥∥∥M>
j

(
µ
u

)∥∥∥∥≥ 2
‖x j‖2 |µ‖x j‖2 + 〈x j,u〉|

≥ 2|µ|−
∣∣∣∣〈 2

‖x j‖2 x j,u
〉∣∣∣∣≥ 2|µ|− |φ∗(u)|

≥ 2|µ|− |minφ∗(RN)|− |µ|= |µ|− |minφ∗(RN)|

and thus, with (A.36),

Û(iib) :=
2

‖x j‖2 US +2|minφ∗(RN)| ≥ |µ|+ |minφ∗(RN)| ≥ |φ∗(u)| ≥ φ∗(u).

Hence, we have

(µ,u) ∈ [−Û(iib),Û(iib)]× lev≤Û(iib)
(φ∗).

Since (µ,u) ∈ (M>
j )

−1(S)∩∂ φ̃(0,0)∩ (R×Bc) is chosen arbitrarily, we have

(M>
j )

−1(S)∩∂ φ̃(0,0)∩ (R×Bc)⊂ [−Û(iib),Û(iib)]× lev≤Û(iib)
(φ∗). (A.37)

Consequently, by using (A.33) and (A.37) and by letting U(ii) := max{Û(iia),Û(iib)}, we have

(M>
j )

−1(S)∩∂ φ̃(0,0)⊂ [−U(ii),U(ii)]× [lev≤U(ii)(φ
∗)∪B(0,r⋆)],

which guarantees the boundedness of (M>
j )

−1(S)∩∂ φ̃(0,0), due to the coercivity of φ∗, implying thus finally
the statement (ii).

ut
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